美國專利商標局結束專利申請審查後試行程序

  美國專利商標局(United States Patent and Trademark Office, USPTO)於2017年1月12日宣布其不再依其審查後試行程序(Post-Prosecution Pilot Program, P3 Program)受理新的案件。該程序係用以使發明人在專利申請程序受到駁回以後得提出更多回饋意見,以期減少上訴至專利審判暨上訴委員會(Patent Trial and Appeal Board, PTAB)之數量。

  該程序係在2016年7月11日公布施行,在該程序中,申請人在最終駁回做成後兩個月內得請求召開聽證;申請人得對審查員進行20分鐘內之口頭簡報。簡報進行完畢以後,申請人即被排除於會議之外,審查委員之裁決將會以書面之形式通知申請人。

  在P3程序創設以前,專利申請被駁回的發明人得採取上訴前先期審查會議試行計畫(Pre-Appeal Brief Conference Pilot Program)或是最終審議後試行程序2.0(After Final Consideration Pilot 2.0, AFCP2.0)的方式提出明顯錯誤的爭執或是申請內容的修改,但這兩種申訴方式並無法讓申請人取得直接向專利審查員進行簡報的機會。

  在2016年7月11日公布本項試行程序時,USPTO即宣布本項計畫試行時間直到2017年1月12日,或是USPTO受理1600位合格申請為止,在本計畫按照預定時程結束後,USPTO表示將會依公眾回饋意見以及試行程序的結果來決定未來是否會施行類似於本計畫之措施。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國專利商標局結束專利申請審查後試行程序, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7715&no=55&tp=1 (最後瀏覽日:2026/01/18)
引註此篇文章
你可能還會想看
英國科學辦公室發布分佈式分類帳技術報告,提出八大建議

  2016年1月, 隸屬英國商業、創新和技術部 (Department for Business, Innovation and Skills,BIS)的科學辦公室(Government Office for Science)發布「分佈式分類帳技術:區塊鏈以外(Distributed Ledger Technology:beyond block chain)」研究報告。本篇報告由產官學界合作完成,主要在評估分佈式分類帳技術可以運用在哪一些公私領域,並決定政府以及私人應該採取哪些行動以促進分佈式分類帳技術可被有益運用,並避免可能帶來的傷害。   該份研究報告認為,分佈式分類帳技術可在多個領域協助政府機構,包含徵稅、提供福利、發行護照、土地登記、確保商品供應鏈並且確保政府記錄與服務的完整性。相較於其他網路系統,分佈式分類帳技術較不易受駭客攻擊,而且由於每個参與者都有一份帳簿副本,如果有惡意竄改的狀況,也可以輕易被發現,但這不表示分佈式分類帳技術就不會被駭客攻擊。   數位五國(Digital 5,D5)之一的愛沙尼亞,已多年實驗運用分佈式分類帳技術於公領域服務多年。愛沙尼亞政府透過私人公司運用分佈式分類帳技術建制「免金鑰簽名設施(Keyless Signature Infrastructure,KSI)」,KSI允許愛沙尼亞公民驗證其在政府資料庫資訊的完整性,並避免內部人透過政府網路從事非法活動。KSI確保公民資訊安全以及準確,因而可協助愛沙尼亞政府提供數位化的公司登記以及稅務服務,減少政府以及社會大眾的行政作業負擔。   除此之外,分佈式分類帳技術也有助於確保商品以及智慧財產權的所有以及出處。例如Everledger此一系統可用於確保鑽石的身分,從礦產、切割到銷售,可減少並避免欺詐以及「血鑽石」進入市場。   簡而言之,分佈式分類帳技術提供政府可減少詐欺、腐敗、錯誤以及紙上作業成本的框架,並透過資訊分享、公開透明以及信任,具有可重新定義政府與公民關係的潛力。對於私領域而言也具有同樣可能性,報告特別提出可透過分佈式分類帳技術發展「智慧契約」,可增加信任度並提高效率。據此,本報告針對政府部門提出八大建議: (1) 應成立專責部門,並與產業、學界緊密合作,並應考慮成立臨時性的專家諮詢團隊。 (2) 英國的研究社群應該要投入研究確保分佈式分類帳技術具備可即性、安全性以及內容準確性。 (3) 政府應支持為地方政府成立分佈式分類帳技術實地教學者,匯聚所有測試技術以及其運用的所需元素。 (4) 政府需要思考如何為分佈式分類帳技術建立妥適的法制框架。法規需要配合新科技應用技術的發展而進步。 (5) 政府應該與產學合作確保相關標準可以符合分佈式分類帳技術及其內容完整性、安全性以及隱私的需求。 (6) 政府應與產學合作確保最有效率以及最可用的身分認證網路協議可為個人及組織所使用,這項工作應與國際標準的發展與執行緊密連結。 (7) 政府應對分佈式分類帳技術進行試驗,以評估該項技術在公領域的可行性。 (8) 建議成立跨部門的利益群體,結合分析以及政策群體,以生成並發展潛在使用案例,並且在公民服務中提供具備知識的專家人員。   除了八大建議,管理與法制上,本報告指出分佈式分類帳技術具有兩種管理規範:法律規範以及技術規範。法律規範是「外部」規範,法律規範可能會被違反,緊接著面臨違法處罰的問題。技術規範是「內部」規範,假如違反技術規範,「錯誤(error)」產生無法運作,因此「規範」本身就可以確保會被遵循。換句話說,技術規範可以節省法律規範的執法成本。另外一方面,分佈式分類帳技術為去中心化技術,如果要以法制管理,也只能在参與者身上施加法律義務,例如Bitcoin,只能對於提供Bitcoin交易服務的平台施加法律義務。美國紐約州金融服務部所發行的比特幣交易執照BitLicnese即為一例。因此,基於去中心化的特性,報告建議政府單位應該要儘量参與技術標準的制定,並且配合技術標準制定相關法律,法律規範與技術規範兩者應該要交互影響。

美國白宮對具危險性的生物研究提出新規範

  美國白宮為避免由聯邦補助的生物科技研究案,因研究涉及具危險性生物,而不經意製造出生化武器,繼此於2014年9月24日由國家衛生研究院(National Institutes of Health,NIH)和白宮科技政策辦公室(White House Office of Science and Technology)共同提出新規範,即「美國政府對生物科學雙重用途研究與考量的機構監督政策」(United States Government Policy for Institutional Oversight of Life Sciences Dual Use Research of Concern),旨在加強由聯邦預算補助的生物雙重用途研究(Dual Use of Research)安全性。   前述生物科技研究中的生物雙重用途研究,意指以增進公共衛生、國家安全、農業、環境等為主旨的生命科學研究之外,尚有其他具殺傷力或致命性的合法研究,例如合成病毒、除草劑等。早於2013年,美國白宮即已開始實施「美國政府對生物科學雙重用途研究與考量的監督政策」(United States Government Policy for Oversight of Life Sciences Dual Use Research of Concern),惟本次另以機構為主要規範對象。而作成新規範之重點分述為三如下: 1.原先以補助單位(通常為國家衛生研究院),為具危險性生物研究案為監督、責成單位,現將該監督責任歸屬移轉至取得相關補助的科學家、大學或研究機構。 2.從事相關具危險性生物研究之科學家,必須通報其所屬機構,並且須召開審查委員會評估相關風險,亦須通知聯邦層級的補助單位。此外,該科學家與其機構必須提交一份風險防範之計畫書,例如建立生物安全等級(biosafety rating)較高的實驗室等。 3.違反相關規範之受補助對象,將面臨中止、限制或終止補助之處分,甚至失去申請未來聯邦補助單位所補助一切與生命科學相關研究補助的機會。

美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統

紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。

政府科研計畫執行與貪污犯罪

TOP