德國公布商業無人機新規範,加強操作安全及隱私保護

  隨著資通訊技術與網路科技整合,無人機熱潮在全球各地崛起,相關創新應用蓬勃發展,產業規模也因此快速擴張,然而國內外不斷傳出多起無人機意外事件,相關操作規範及隱私等法律議題也備受矚目。

  德國聯邦交通部於2017年1月18日公布無人機新規範,以提升無人機操作安全,防止碰撞等意外事件,並加強隱私保護。所謂無人機即搖控飛行器,德國航空法上之定義包括模型飛機及無人航空系統設備,前者係用於私人娛樂或體育競賽,其餘飛行器,尤其是商業用途,則歸屬於後者,本次規範重點如下:

1.特定模型飛機場域內的操作規定,不受本次規範修訂影響,惟必須於操作之飛行器上標示所有人之姓名及地址供辨識。

2.超過0.25公斤之無人機或模型飛機,有標示所有人之姓名及地址供辨識之義務。

3.超過2公斤之無人機或模型飛機操作者,必須通過聯邦航管局技能測試或取得飛行運動協會核發之技能證書。

4.超過5公斤之無人機或模型飛機,必須額外取得各邦民航局之許可。

5.除特定模型飛機場域內,或例外經由各邦民航局申請核可者外,飛行高度不得超過100公尺。一般而言,應於視線範圍內飛行,但未來將可能適度放寬,以利商業無人機之運用發展。

6.無人機或模型飛機應避免與其他無人機碰撞。

7.禁止造成各種障礙或危險之飛行行為。

8.禁止商業無人機或模型飛機在敏感區域飛行,例如憲法機構、聯邦或各邦機關、警消救災範圍、人群聚集區、主要交通幹道、機場起降區。

9.超過0.25公斤之無人機或模型飛機,或配備光學、聲音、無線電信號發送或記錄設備之飛行器不得在住宅區飛行。

  近來幾起無人機入侵機場事件造成嚴重飛安威脅,相關碰撞意外新聞也不斷頻傳。為兼顧生命財產安全及促進新興技術發展,有必要進行適度合理監管及預防措施,並加強操作安全及隱私教育,以降低危害風險,並於意外或違規事件發生後,得以追究肇事者相關法律責任。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 德國公布商業無人機新規範,加強操作安全及隱私保護, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7730&no=55&tp=1 (最後瀏覽日:2025/04/05)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

日本經濟產業省所屬研究機構提議「日本能源基本計畫修正研析建議」報告

  日本經濟產業省(Minister of Economy, Trade and Industry)所屬「自然資源及能源諮詢委員會(Advisory Committee for Natural Resources and Energy)」於2011年12月提出一份「日本能源基本計畫修正研析建議(Establishment of a New Basic Energy Plan for Japan)」,對於現有日本能源基本計畫,研析討論重要議題,並提出修正建議。   日本能源基本計畫,係因日本政府為因應2020年應達25%減碳目標(相較1990年水準),於2010年所規劃擬訂之推動計畫。而自然資源及能源諮詢委員會則是陸續招開會議研商討論,並提供建議給日本經濟產業作為省調修參考。此份報告指出,此份報告指出,能源基本計畫之推動架構必須重新思考,包括提議能源政策應強調重視「需求端(Demand Side)」,與兼顧「消費者(Consumers)」、「社會公民(Ordinary Citizens)」、「區域社區(Regional Communities)」等方面意見及利益,並建立社會公眾信心(Public’s Trust),以及必須能達到多元化不同電力能源之來源應用,並對於日本國家所需能源組成結構(Desired Energy Mix)進行討論議訂。   並且,對於推動實施,建議能源政策改革應朝向,以改革需求端架構(Reform of the Demand Structure)來達到能源節約社會目標,,以及改革供給端(Reform of the Supply Structure)來達到下一代分散式能源系統目標,並且倡議以創新技術來協助國家能源組成結構轉型,與能源供給端至需求端應備建設(Energy Supply-Demand Structure)之改革工作。   此研究報告於2011年12月提出後,歷經多次修改(最新更新為2012年1月),未來提交給經濟產業省供政策參考後,將產生如何影響內容,將再持續觀察最新進度。

政府資訊加值利用與管理法制研究:以美國及英國為例

美國交通部提出自駕車全面性計畫,以促進自動駕駛系統規範環境之整合、透明性與現代化

  美國聯邦運輸部(US Department of Transportation)於2021年1月11日發布「自駕車全面性計畫(Automated Vehicles Comprehensive Plan, AVCP)」,建立了交通部促進合作、透明性與管制環境現代化,並將自動駕駛系統(Automated Driving Systems)安全整合入交通系統之策略。基於過去「自駕車政策4.0」建立之原則上,自駕車全面性計畫定義了三個目標以達成其願景: 促進合作與透明性:交通部將會促進其合作單位與利益相關人可取得清楚且可靠之資訊,包含自駕系統的能力與限制。 使管制環境現代化:交通部將會現代化相關規範並移除對創新車輛設計、特性與運作模組之不必要障礙,並發展專注於安全性之框架與工作以評估自駕車技術的安全表現。 運輸系統之整備:交通部將會與利害相關人合作實施安全的評估與整合自駕系統於運輸系統之基礎研究與行動,並促進安全性、效率與可取得性。   政策文件中也就相關目標提出了關鍵目的以及行動,包含先前交通部所提出的「自駕系統安全性框架(Framework for Automated Driving System Safety)」草案,將透過建立框架定義、評估並提供自駕系統的安全性需求,並同時保留創新發展之彈性;另外此政策文件也提出了如何將自駕系統融合現有技術應用之實際案例。交通部將會定期的檢視相關行動與計畫,以反應技術與產業發展,並減少重複性之行動,並將資源投注於重要領域。

TOP