標準制定組織為了提高產業競爭,防止標準制定組織之會員們,在獲得涵蓋產業標準的專利權後,以壟斷性手段壓迫其他競爭對手,故通常會以智慧財產權政策要求參加的會員揭露其被標準制定組織選擇寫入標準的專利。其重要內容通常包括:
1. 必要專利揭露
許多標準制定組織皆有規定,標準必要專利權人應依以誠實信用及適當方式進行揭露之義務,例如IEEE及ETSI 。即對於討論中的技術標準,必須對標準制定組織及其參與者公開揭露所持有的必要專利。揭露的基本目的主要有三項 :
(1) 使標準開發相關工作小組會員可以掌握納入標準之多項候選技術的基本資訊(例如專利技術價值、成本及可行性等等),並做出適當選擇。
(2) 藉此得知須提出授權聲明或承諾的必要專利權人。
(3) 藉此讓必要專利的潛在實施者得知應向那些必要專利權人獲取必要專利相關資訊。
2. 事前揭露授權條款(ex-ante disclosure of licensing terms)
事前揭露授權條款係一種受保護之技術在被採納為標準必要專利前,將授權條件的揭露的機制,目前IEEE及ETSI採行自願性揭露方式。與必要智財權的揭露及授權聲明不同,其主要的目的在於讓標準制定委員會將技術採納為標準前,可以根據所揭露的授權條件來決定有那些技術在符合權利人授權條件下,有哪些技術可以納入標準,又有哪些不同替代技術,並據以作成決定 。
本文為「經濟部產業技術司科技專案成果」
英國資訊委員會(Information Commissioner’s Office, 以下簡稱ICO)最近對於2014年「巨量資料與個資隱私保護報告」(Big Data and Data Protection)進行公眾意見徵集。其中有意見認為ICO過度聚焦於以取得資料當事人同意為前提,才得以進行巨量資料統計分析技術應用;且未充分認知當資料控制者(企業或組織)具合法權益(legitimate interest)時,可能得以處理個人資料的可能。意者並進一步建議當資料控制者(企業或組織)符合合法權益時,應可將個人資料用於新用途,強調這種依據合法權益所進行之資料處理,應著重於該資料控制者(企業或組織)對於個人資料的責任(accountability),而非各別取得資料當事人的同意。 對此,ICO回覆,認為巨量資料統計分析技術的應用,應在資料控制者(企業或組織)的合法權益、與資料當事人的權利、自由與合法權益間,取得平衡。依據歐盟資料保護指令(Data Protection Directive)與英國資料保護法(Data Protection Act)的規定,資料控制者(企業或組織)得於具法定依據時,處理個人資料,例如取得個資當事人的同意處理其個人資料,或資料控制者(企業或組織)具法定義務處理個人資料(例如法院命令)。除此之外,企業或組織還可以主張於其對於個人資料具合法權益(legitimate interest),主張進一步處理個人資料(新用途),除非資料處理對於資料當事人的權利、自由與合法權益造成過份偏頗(unduly prejudice)的損害。ICO亦同意,資料的應用應著重監督資料控制者(企業或組織)與加強其責任(accountability)。 ICO除再度闡明在「巨量資料與個資隱私保護報告」,資料控制者(企業或組織)必須公平且通透(transparent)地處理個人資料,對於當資料控制者(企業或組織)發現個人資料的新用途時,亦明列出得依據先前所取得之資料當事人的同意進行個人資料的各種情況。 ICO建議,資料控制者(企業或組織)應當先行檢視資料當事人是否確實同意其個人資料的處理,或該資料控制者具處理個人資料之其法定依據。再者,如果不具上述二者之一,資料控制者(企業或組織)若需將使用個人資料於新用途,則必須另行取得資料當事人的同意,始得為之。此時,必須同時評估為了新用途所為之個人資料處理,是否與資料蒐集之特定目的相容(compatible)。 至於,判斷新用途是否與個人資料蒐集與處理之特定目的相容,部分取決於個人資料處理是否公平(fair)。這意味著資料控制者(企業或組織)必須對於為新用途所為之個資處理,提出對於資料當事人隱私影響之評估,以及該個資的使用與處理,是否仍合於資料當事人的合理期待。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
中國將對幹細胞臨床研究及應用研擬管理規範為妥適管理中國幹細胞醫療產業,中國衛生部下令停止未經許可之幹細胞臨床研究和應用行為,並展開為期一年的幹細胞臨床研究和應用規範整頓工作。此期間分為「自查自糾」、「重新認證」和「規範管理」等階段。中國衛生部及國家食品藥品監督管理局(以下簡稱食品藥品監管局)辦公室於今年(2012年)1月6日發布一份名為《關於發展幹細胞臨床研究和應用自查自糾工作的通知》之部門規章,明白揭示於「自查自糾」階段各省、自治區及直轄市之衛生廳局及食品藥品監督管理局應如何辦理。 該通知中要求全國各級各類從事幹細胞臨床研究及應用之醫療機構及相關研究單位應依照《藥物臨床實驗質量管理規範》及《醫療技術臨床應用管理辦法》之規範進行自查自糾工作,如實總結並填寫幹細胞臨床研究和應用自查情況調查表,報告已完成或刻正進行之幹細胞臨床研究和應用活動;另外一方面,中國衛生部及食品藥品監管局及各省、自治區及直轄市將分別組成工作領導小組及工作組,制定自查自糾工作方案。針對尚未經批准之幹細胞臨床研究和應用,於通知文件中明白揭示應予停止;已經批准者,亦不得任意變更臨床試驗方案,或自行變更為醫療機構收費項目。值得注意者,為整頓對幹細胞臨床研究及應用之管理,並研擬符合國內需求之管理機制,直至今年7月1日前,相關主管機關將不受理任何申報項目。 中國截至目前為止,尚未針對幹細胞技術之臨床實驗或應用做成法規或政策,僅適用一般性藥品法規,相較於國際間先進國家屬相對鬆散。中國衛生部及食品藥品監管局於近日做成之通知文件顯示了中國政府開始對於幹細胞臨床實驗及應用之規範面向有所重視,針對其後續衍生之管理規範值得我們持續追蹤關切。
地方創生「地方創生」之概念源於2014年日本安倍內閣所提出的地方治理新模式,又稱「激勵地方小經濟圈再生」政策(ちほうそうせい),其施政重點主要為解決三大問題:人口高齡化和負成長造成的勞動力人口的減少、人口過度集中都會區(尤其是東京)以及地方人口外流以致人力資源不足而使地方經濟發展面臨困境之情形。 自2008年以來,日本人口開始加劇下降,導致消費和經濟實力下降,成為日本經濟和社會的沉重負擔。為解決該情況,國家與地方合作對地區發展持續落實、檢討、修正相關政策。政策原則為自立性、未來性、區域性、直接性、結果導向;政策內容亦稱為地方創生三支箭(地方創生版・三本の矢),包含: 資訊支援(情報支援):推廣區域經濟分析系統(Regional Economy Society Analyzing System, RESAS),使各地區能對產業、人口、社會進行必要的數據分析,並能依據分析結果解決地方問題。 人才支援:維持地方生活在地化、就學在地化、服務在地化,並派駐國家公務員至小規模的地方政府機關,輔佐地方機關首長。 財政支援:補助地方創生政策執行、補助地方基礎建設、施行地方稅制改革。 地方創生之目標,在於鼓勵日本國民維持在當地工作,為地區創造新人潮,並使地方年輕人能在家鄉安心結婚育兒,此外,讓各地結合地理及人文特色,發展出最適合地方的產業,中央和地方持續合作以實現地方政府的永續發展目標。