德國機器人和人工智慧研究

  人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。

  德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。

  解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。

本文為「經濟部產業技術司科技專案成果」

※ 德國機器人和人工智慧研究, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7749&no=67&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

美國聯邦通訊管理委員會對LPTV的新管制措施

  為了確保農村地區低功率電視(LPTV)播送的服務,與協助該等地區傳輸數位訊號,美國聯邦通訊委員會(FCC)決議從2009年8月25日起,不再接受新的類比傳輸運用與設備建置之申請,只允許新的數位低功率電視(new digital-only LPTV)及其有關之電視訊號轉換站的設置申請。此申請機會將限於特定區域,以及採行「先申請先服務」(first-come, first-served)的處理程序。此外,針對全國性的核發執照申請,則於2010年1月25日開始受理。   低功率電視起源於1982年,係FCC為了地方導向、實踐表意自由權利與促進文化多樣性,而在小型社區允許低功率電視執照擁有者得享有「次級性頻譜使用權」(secondary spectrum priority),於VHF(2-13)或UHF(14-51)頻段中,提供電視節目播送之服務。   根據2005年聯邦赤字削減法(Federal Deficit Reduction Act of 2005)規定,美國已於2009年6月12日全面停播類比訊號節目,改以數位訊號播送,但該法並未規範低功率電視台播送訊號的數位化時程,故有關既有低功率電視相關之管制亦須一併修訂,方能達到全數位化的視聽環境目標。

英國Ofcom提出「促進智慧聯網之投資與創新」報告並對英國智慧聯網管制應補強之方向提出建議

  英國電信主管機關Ofcom於2015年1月提出「促進智慧聯網之投資與創新」報告(Promoting investment and innovation in the Internet of Things),對英國智慧聯網(Internet of things, IOT)之管制發表意見。Ofcom認為就英國發展智慧聯網之現況而言,在商業上確實已經進行智慧聯網發展並投資之,然,並未對複雜的發展做好準備;Ofcom亦承認英國在基礎設施和政府管制架構上,尚未具備適當的發展。於此報告中,Ofcom提出四方向的建議,分別為資料隱私與消費者認識、網路安全與防護、智慧聯網可用之頻譜和電話號碼與網址管理等四項。   首先在資料隱私與消費者認識部分,Ofcom認為以現有管制保護智慧聯網下之隱私的效果有限,因此建議英國「資訊專員辦公室」(Information Commissioner's Office , ICO)需要發展未來隱私保護議題之解決方法,並且與政府及其他管制機關就資料隱私之法制議題共同進行,包括將現有之資料保護管制之範圍進行評估,考量是否需涵蓋到所有智慧聯網設施,和訂定智慧聯網資料共享之原則。   第二,在網路安全與防護管理上,Ofcom指出英國2003年通訊法(Communication Act 2003)已就服務提供者所提供之公眾可使用的網路與服務,課與特定安全與防護責任;例如網路與服務提供者必須採取適當的手段管理安全風險,尤其需將對終端使用者之影響降至最低、網路提供者必須採取所有適當的程序,盡可能的保護網路安全。然,Ofcom認為智慧聯網並未直接規定於現有的管制中,例如智慧電網設施之高度安全與防護範圍應涵括私人網路;故,應評估必須規定於法律中的智慧聯網網路與服務種類,以達完善防護。   再者,關於智慧聯網可用之頻譜議題,著重於用於智慧聯網之技術須改進。目前使用之頻譜在2.4和5GHz(此頻譜亦用於Wi-Fi服務);而未來的設施也可能使用到1GHz以下的頻譜,同時Ofcom也說明其將來僅會監視頻譜的利用,而不會開放新的可用頻譜。   最後,在電話號碼與網址管理方面,就智慧聯網設施之網際網路協定,未來可能會從IPv4發展成為IPv6也是相當重要的。Ofcom認為未來智慧聯網可能會發展成一個「相當大數量且顯著的設施」,故採用IPv6將顯得更為重要;然,就目前而言,英國採用IPv6之情況系落後於其他國家的。   Ofcom現正致力於發展新的頻譜管制、數據隱私、網路安全與網址等管制,殊值得繼續觀察以俾利我國智慧聯網管制與發展。

TOP