人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。
德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。
解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。
本文為「經濟部產業技術司科技專案成果」
2022年2月4日英國智慧財產局(以下簡稱IPO)發布的2022至2027的智慧財產打擊侵權戰略,主要著重於智慧財產的保護,打擊智慧財產侵權行為,以保護英國企業的智慧財產。 有鑑於智慧財產侵權/犯罪被視為低風險高回報的侵權行為,此次發布的智財戰略,主要在於強化英國原有的智慧財產執法機制,著眼於對於智慧財產現今與未來所會面對的挑戰,可著重於三大主軸,包含建立夥伴關係,與其他國內外夥伴合作,將智慧財產執法資源進行整合,建立打擊智慧財產侵權的網絡;發揮領導效用,透過與夥伴的合作,強化其他國家打擊智慧財產犯罪的能力,確保英國企業的智慧財產在海外亦受到充分保護;教育提升,藉由與夥伴的合作,一起展開有效的智慧財產活動,減少智慧財產侵權行為,以及消費者認識智慧財產犯罪和侵權的行為,避免無意間捲入侵權行為中。 除以上三大主軸之外,該戰略並採用於打擊組織犯罪所用的4Ps方法,包含預防(prevent)、保護(protect)、準備(prepare)和追查(pursue),以確保跨部門合作可被有效執行。 該戰略並不是針對現行智慧財產侵權/犯罪問題提出解方,而是針對智慧財產的長期所需,試圖建立一個基本框架,確保透過公私合作關係(包含國內合作與國際合作)解決智慧財產侵權/犯罪結構,使英國企業更有信心將資源投入在創新上。
FCC指定九家業者負責管理閒置頻譜資料庫美國聯邦通訊委員會(Federal Communications Commission,FCC)於2008年11月公布法規命令,開放閒置無線頻譜之使用。閒置頻譜緣起於美國無線電視訊號,對於鄉村或偏遠人口較少之地區並無覆蓋,這些地區之無線電視頻譜處於閒置未用狀態。FCC因應無線通訊對頻譜之需求,在以拍賣釋出新頻譜的同時,也由增進既有頻譜的效率著手。 FCC於此法規命令中公布初步的技術規範,包含使用地理資料庫以及感知無線電技術作為利用閒置頻譜之要件。之後,FCC於2009年11月公告接受業者遞交計畫書,審查是否能成為資料庫管理者之資格。 2010年9月FCC再度公布新的法規命令,取消感知無線電技術作為必要條件之要求,並調整技術規範,也預告將選擇民間業者來進行地理資料庫之管理與建置。 2011年01月26日,FCC正式公告九家業者,包括Comsearch、 Frequency Finder、Google、KB Enterprises LLC and LS Telcom、 Key Bridge Global LLC、 Neustar、Spectrum Bridge、 Telcordia Technologies、 WSdb LLC.。這九家業者將必須針對2010年所發佈之新規則提出補充資料,並與FCC工程技術辦公室(Office of Engineering and Technology ,OET)配合,舉行一系列的研討與測試實驗,確立最後的技術標準與測試資料庫運作的穩定度。 FCC亦表示,資料庫管理者必須同意,他們將不會從事任何歧視性及反競爭行為,亦不可有危及用戶隱私之行為。 在FCC指定地理資料庫的管理者後,美國開放閒置頻譜使用的前置準備也可說是完成,未來等業者完成測試,相關利用頻譜的設備上市之後,可望為無線通訊市場帶來更多低成本的選擇。
美國《代幣分類法》(Token Taxonomy Act)草案目前,美國證券管理委員會(U.S. Securities and Exchange Commission, SEC)對於數位貨幣的態度傾向於將代幣視為有價證券。《代幣分類法》(Token Taxonomy Act)草案則是持反對意見的聲浪¬,由美國眾議員Warren Davidson為首,並且獲得跨黨派多位眾議員的支持。《代幣分類法》主要的訴求是希望可以將數位代幣排除於證券,進而排除虛擬貨幣之稅務。重點有三: 修正《證券交易法》,將數位代幣排除於證券 將「數位代幣」(Digital Token)定義為驗證交易或遵循規則防止交易被竄改之「數位單元」(Digital Unit,以電腦可讀取的形式儲存,用於表彰經濟、財產上權利,或存取權限)。同時,在原先「證券」(Security)的定義中,排除「數位代幣」;另將證券「交易」(Exchange)交易排除數位貨幣適用。 擴張銀行之定義 修改「銀行」之定義。原先《1940年投資顧問法》和《1940年投資公司法》所指之「銀行」,包括「取得存款或執行信託權利(Fiduciary Powers)」等與准許經營銀行執行雷同事業者,是否為公司不在所問(Incorporated)。《代幣分類法》將之擴張為「取得存款、提供保管服務(Custodial Services)或執行信託權利」。 修正將虛擬貨幣視為免課稅對象 虛擬貨幣(Virtual Currency)定義為表彰數位價值之交易媒介且不是貨幣。並修正美國《1986國內所得稅法》(Internal Revenue Code of 1986),將虛擬貨幣交易視為免課稅之交易,並將總額小於600美金的虛擬貨幣買賣或交易之所得,排除於總收入(Gross Income)之外。 然而,目前美國證券管理委員會的態度仍未改變,並且於2019年4月3日發表〈數位資產「投資契約」分析之架構〉(Framework for “Investment Contract” Analysis of Digital Assets)。該分析架構說明:凡符合Howey Test之標準的「投資契約」即屬於「證券」,有《證券交易法》的適用。〈數位資產「投資契約」分析之架構〉甫發表,Warren Davidson與另外五位眾議員隨即重新提起2019年版的《代幣分類法》草案,是繼2018年9月、2018年12月第三度提起相關法案。楊安澤(Andrew Yang,美國首位角逐總統的華裔候選人)在2020年民主黨黨內總統初選政見中,亦援引《代幣分類法》草案,希望可以與連署《代幣分類法》草案的美國國會議員和懷俄明州(Wyoming)的立法者,共同擘畫有利於商業與人民的數位資產框架。
英國與美國為人工智慧安全共同開發簽署合作備忘錄英國技術大臣(U.K. Secretary of State for Science)蜜雪兒·多尼蘭(Michelle Donelan)和美國商務部長(U.S. Secretary of Commerce)吉娜·雷蒙多(Gina Raimondo)於2024年4月1日在華盛頓特區簽署一份合作備忘錄(MOU),雙方將共同開發先進人工智慧(frontier AI)模型及測試,成為首批就測試和評估人工智慧模型風險等進行正式合作之國家。 此備忘錄之簽署,是為履行2023年11月在英國的布萊切利公園(Bletchley Park)所舉行的首屆人工智慧安全峰會(AI Safety Summit)上之承諾,諸如先進AI的急速進步及濫用風險、開發者應負責任地測試和評估應採取之適當措施、重視國際合作和資訊共享之必要性等等,以此為基礎羅列出兩國政府將如何在人工智慧安全方面匯集技術知識、資訊和人才,並開展以下幾項聯合活動: 1.制定模型評估的共用框架(model evaluations),包括基礎方法(underpinning methodologies)、基礎設施(infrastructures)和流程(processes)。 2.對可公開近用模型執行至少一次聯合測試演習(joint testing exercise)。 3.在人工智慧安全技術研究方面進行合作,以推進先進人工智慧模型之國際科學知識,並促進人工智慧安全和技術政策的一致性。 4.讓英、美兩國安全研究所(AI Safety Institute)間的人員互相交流利用其團體知識。 5.在其活動範圍內,依據國家法律、法規和契約規定來相互共享資訊。 換言之,兩國的機構將共同制定人工智慧安全測試之國際標準,以及適用於先進人工智慧模型設計、開發、部署、使用之其他標準。確立一套通用人工智慧安全測試方法,並向其他合作夥伴分享該能力,以確保能夠有效應對這些風險。就如英國技術大臣蜜雪兒·多尼蘭強調的,確保人工智慧的安全發展是全球性問題,只有通過共同努力,我們才能面對技術所帶來的風險,並利用這項技術幫助人類過上更好的生活。