人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。
德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。
解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。
本文為「經濟部產業技術司科技專案成果」
美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
歐盟擬大幅調降文字簡訊傳輸費用歐盟執委會電信委員Viviane Reding提出一項擴大手機漫遊簡訊計畫(cross-border text messages plans),主要內容系將目前平均一通49美分的漫遊文字簡訊傳輸調降70%以下。在確定這項政策可以獲得歐盟民意的支持後,新的正式立法計畫將在2008年秋天完成,經過歐盟政府與歐盟議會同意後,預計於2009年的夏天實施這項新政策。 雖然丹麥建議以4.2美分作為零售文字漫遊簡訊的價格上限,但是在徵詢各方意見後,電信委員會最後仍然決定以12美分做為文字漫遊簡訊的價格上限。除此之外,依據電信委員會的消息指出,文字漫遊簡訊的批發價上限也將可能調降在4到8美分之間。 有業者表示,歐盟電信委員會增加對於電信費率的價格管制,將會降低業者研發新服務的意願。但是,歐盟電信委員會認為業者的主張,並不能構成文字簡訊費率上限政策施行的阻礙。 由於文字簡訊的市場已經成熟,業者在此項服務的獲利上已相當穩定,因此透過合理的價格上限,可以讓消費者有更符成本的漫遊文字簡訊服務,同時業者也能持續在此項服務上獲利。但是反觀資料傳輸尚處於萌芽階段,因此電信管制者與系統業者皆認為目前就漫遊的資料傳輸進行價格上限管制尚不適宜。 另外,Reding於2007年曾提議對於歐洲漫遊語音通話的價格進行上限管制,此項電信費率政策受到習慣於暑假進行跨國旅遊的歐盟居民的歡迎,Reding表示此項於2009年到期的政策極可能再延長三年至2012年。
日本發布成為可信賴夥伴的資料治理手冊,呼籲企業應建立並實施貫穿資料生命週期的資料治理機制日本獨立行政法人情報處理推進機構於2025年1月28日發布《成為可信賴夥伴的資料治理手冊(下稱《手冊》)》,旨在呼籲企業建立與實施「貫穿資料生命週期的資料治理機制」,藉此將資料價值最大化,並將資料風險最小化。 《手冊》指出,資料驅動著社會發展,資料治理的重要性亦隨之提升。資料治理係指企業或組織透過機制、規則與制度等多種層面的策略性手段管理其重要資料資產,並透過制定相應的政策與規則,確保資料的品質與安全性。同時,考量資料具備易於複製、竄改且流通難以控制的特性,建立完善的資料治理機制亦有助於在共享資料的過程中維持其品質及安全性。推動資料治理的基礎,則仰賴適當且有效的資料管理機制,亦即確保在蒐集、處理、儲存與使用等資料生命週期各階段皆能落實資料管理機制。然而,資料管理本身要能發揮效益,仍須依賴組織具備足夠的資料成熟度,即具備正確處理與應用資料的整體能力,方能系統性的落實管理與治理工作。 根據《手冊》內容,透過資料治理,企業或組織將能確保資料品質、透明度及安全性,並基於可信任的資料進行決策,進而有效提升決策精準度,實現風險管理與法規遵循,進一步強化自身在資料經濟中的「價值」、「信任」與「公正性」。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料治理機制,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為制度設計與實務推動之參考,以強化資料治理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國寬頻業者推動網路傳輸流量上限管理方案有鑑於網路使用人口中,不同使用者族群所消耗的傳輸量比例相差懸殊,美國寬頻業者於近來積極推動網路傳輸流量上限管理計畫,且繼Comcast與Time Warner等業者的初步嘗試後,美國最重要的網路服務提供者—AT&T,也宣布將開始進行客戶網路流量管理計畫。 這項嘗試計畫將以限制新的DSL用戶為起點,其所規定的每月下載與上傳流量上限,係依據客戶申請的寬頻方案有所不同,分別被限制在20G至150G (gigabytes)不定。超過的部分則將持續向使用者警告兩個月後,依每超過1G加收一美元的費用,向使用者收費。 至於提出此項管理方案的理由,據AT&T發言人表示,是因為網路頻寬的使用分佈過於不平均,高達46%的頻寬是5%的使用者在使用,而21%的頻寬更是只為極少數的1%用戶所使用,顯然太過集中。根據AT&T的傳輸上限規定,購買傳輸速度3M (megabits)的寬頻使用者,日後每月的傳輸量上限是60G,這大約等於是下載30部DVD畫質電影的傳輸量。 不過,也有分析師指出,現階段欲全面滿足使用者的頻寬需求,對網路服務提供者而言尚非極大的財務負擔,且管制流量上限的作法,可能對既有以「吃到飽」費率方案為基礎,所發展出來的網路應用服務模式,造成極大的衝擊,此亦也可能引發後續有關網路中立性的政策辯論。