歐盟執委會(European Commission)的移動與運輸專員(European Commissioner for Mobility and Transport )Violeta Bulc在2016年11月23日於華沙發表歐盟目前到2019年的無人機發展計畫───U-space管理系統,該計畫希望能使無人機融入歐盟公民日常生活中的一部分。
U-Space為都會區上的空間(Urban-Space),也代表「你的空間」(Your space),範圍為150公尺以下涉及日常生活的空域空間。其在經濟目標上,期望藉由具體的政策,包含全自動化的導航與空中交管系統的建立,可以使一般人可以公平且容易的使用無人機,讓無人機應用在未來的日常生活成為普遍的應用活動,藉以促進整個歐盟無人機產業的發展。因此,進一步在法規管理上,需要在歐盟地區確立有關無人機之註冊、辨識以及衛星輔助設備之要求的全面一體化(Harmonized)系統,以確保該系統下的無人機操作均符合安全和保安的標準且可以達到隱私與環境保護的訴求。
目前看來,U-Space是推動無人機應用的管理系統,法規方面需要歐洲航空安全總署(European Aviation Safety Agency, EASA)於2016年8月22日公布之的初步無人機法規草案(EASA ‘Prototype’ Commission Regulation on Unmanned Aircraft Operations)支持,像是全自動化的導航系統需要的衛星輔助系統(Geo-fencing)就在EASA草案中提及。
而根據歐盟同一天的新聞稿,為達成U-Space之建置有三個面向須努力:
1.新創技術專案之展示:根據U-Space制度涵蓋之項目為運作基礎的展示專案應該評估特定技術的可行性,以讓相關產品服務早日投入應用,具體專案計畫將在2017年上半年推出。
2.產業密切合作:必須在產業相信歐盟執委會的決心以及願意投資無人機科技的前提下,執委會發展相關基礎設施才有意義。
3.設立新的法規標準:即就前述提及之EASA初步無人機法規草案徵詢各界之意見,預計蒐集各界相關意見後,並經由歐盟執委會、歐盟理事會(Council of the European Union)以及歐洲議會(the European Parliament)的三方會議後,在近期內出現更為具體的草案,議題將包含安全、資安、環境以及隱私等。
英國的寬頻市場競爭在透過執行網路元件細分化(LLU)政策後,英國電信公司(BT)的對手競爭公司如Sky或TalkTalk,利用BT擁有的電話銅線,提供競爭通訊服務的線路數已達到700萬。這顯示英國電信管制機關Ofcom的細分化政策(LLU)已見成效。 這項政策係在2005年9月,由BT向Ofcom做出具有法律效力的承諾,Ofcom要求BT分拆成立一個新公司,稱為Openreach,負責向競爭對手提供線路出租的批發服務。Openreach是基於功能分離之實體,提供BT和其競爭對手完全一樣的交易條件,如契約條款、價格、系統和商業關係。 政策實施初期,英國電信市場僅有約12.3萬條細分化線路。多數人只能選擇BT作為寬頻及固網電話服務的供應商。 根據Ofcom的最新研究,目前英國有超過1900萬條寬頻線路。其中70%以上是由BT以外的其他公司提供服務,其中許多服務建立在BT的細分化網路元件的基礎上。 現有超過30家不同的公司,為家庭和小型企業提供非捆綁式(unbundled)服務。這有助於提升寬頻網路普及、降低固網電話的價格。與2005年9月相較,當時僅37%的家庭和小型企業有寬頻網路,現在這個數字是71%。 競爭對消費者而言,也帶來較低的費用。根據Ofcom的研究,在2005年最後一季時,消費者每月平均為寬頻網路服務支出約23.30英鎊。今天,他們為相同的服務每月付出大約13.31英鎊。 因此由零售價格、寬頻普及、競爭業者數量來看,英國的寬頻市場競爭已經達到一個重要的里程碑。
歐盟新提出之《數位服務法》將針對科技巨擘實施更加嚴格之規定歐盟委員會在2020年1月提出之工作計畫中,即表示2020年第四季度將會提出新的《數位服務法案》《Digital Services Act》,以因應新興數位時代下的歐洲。 2020年10月29日歐盟競爭事務專員表示,幾個科技巨擘針對每天蒐集大量訊息並加以過濾篩選,最後傳遞予公眾有限數量消息的過程,將必須採取更多措施以清除非法及有害的內容,此舉旨在解決與大型社交媒體平台相關之兩大問題,即仇恨言論之傳播以及傷害社會公共對話與民主之言論。 該法案將規範科技公司須針對其行為製作報告,並告知使用者,他們所看到的廣告是由誰付費進行投放、為什麼他們會成為這支廣告的目標對象。蓋因科技公司之數位平台先是無償蒐集使用者個人資料及偏好,再針對這些資料進行分析後,對使用者量身訂製廣告行銷策略,最後科技公司依靠此套方法賺進大量廣告收益,例如,臉書與Google在2018年的廣告收入佔據總收入百分之九十八及百分之八十五以上。 該法案亦將針對科技公司篩選訊息,最後有選擇性的發送特定訊息予社會大眾及量身訂製置入廣告之行為,設立明確規則,羅列應作為或是不作為之清單。例如禁止推銷自己的服務,蓋阻止競爭對手向消費者提供更好的交易服務,等同於變相阻止消費者享受自由競爭和創新的成果;故將先設立協調一致之調查框架,提供一套統一的規則以調查數位服務市場已存之結構性問題,而後在必要時可以採取相關行動,使市場更加具有競爭力。歐盟預計將於2020年12月2日宣布《數位服務法》草案,在正式立法之前,會再與歐盟國家取得一致共識。
芬蘭Skene計畫聚焦電玩遊戲產業依據統計,2011年全球電玩遊戲產值約516億歐元,是娛樂產業中成長最快速的領域,行動遊戲(mobile gaming)也因智慧型手機普及率之提升,在其中扮演舉足輕重的角色。有鑒於此,芬蘭政府於今(2012)年啟動Skene-遊戲補給計畫(Skene-Game Refueled,以下簡稱Skene計畫)促進其遊戲產業的研發創新。 Skene計畫預計從今(2012)年起實施至2015年,將投入7000萬歐元資金補助,其中3000萬歐元由芬蘭的創新補助機關-國家技術創新局(teknologian ja innovaatioiden kehittämiskeskus,Tekes)提供。該計畫致力於創造國際級遊戲及娛樂聚落的形成,期能使芬蘭企業成為國際遊戲產業生態中的重要成員。芬蘭政府欲藉由此一計畫,突破芬蘭Rovio公司過往開發「憤怒鳥」(angry bird)遊戲之偶發性的成功模式,讓芬蘭遊戲產業獲得長期永續的商業效益。Tekes於本計畫中特別強調知識分享的重要,認為此計畫的核心目的在於促進相關知識或經驗,得以在研究機構的專家、遊戲公司乃至其他產業間有系統的傳遞。 事實上芬蘭推動Skene計畫之動機,除了著眼於遊戲產業本身所帶來的龐大商業效益外,也看到遊戲開發過程中產出工具在其他產業之模型、模擬實驗、使用者介面設計及傳統軟體開發方面之助益(例如在醫療照護產業、運算服務之運用或協助教育環境建構或運動訓練等)。由此觀之,芬蘭政府透過Skene計畫推動遊戲產業研發創新之考量,尚包括帶動其他產業之提升的深遠思考。 近年來我國遊戲產業在商業上的表現逐漸受到各界重視,在此背景下,芬蘭Skene計畫無論在具體作為及其背後的思維模式上,皆有我國可以參考借鏡之處。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。