性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化

刊登期別
第28卷,第10期,2016年10月
 
隸屬計畫成果
經濟部技術處產業科技創新之法制建構計畫計畫成果
 

※ 性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7766&no=55&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
日本P2P軟體Winny開發者再遭起訴,並具體求刑一年

日本東京地檢署以助長著作權侵害為由,於 7 月 3 日 向東京地方法院對日本知名檔案交換軟體( P2P ) Winny 的開發者金子 勇提起訴訟,並具體求處有期徒刑一年。這是繼 2004 年 5 月京都地檢署起訴金子 勇後,對同一 P2P 軟體開發者另為起訴的案件。   2002 年,東京大學資訊理工學系研究助理金子 勇開發出可供他人使用的分散式 P2P 軟體 Winny ,旋即受到廣大網友的歡迎。使用者透過 Winny ,不僅交換著未經授權的音樂、影片檔案,甚至包括了部份的警方或自衛隊官方文件。而日本各大企業,如日本雅虎、富士通及 NEC 等,也陸續傳出因公司職員使用 Winny 而導致員工及客戶個人資料外洩的事件。    針對 Winny 開發者起訴案件,目前京都地方法院尚未作出判決,而日本東京地方法院已預定於 9 月 4 日 進行公開審判。此外,因應 Winny 所肇致的資安問題,各相關企業也順勢推出可過濾 Winny 的軟硬體設備,如日本京瓷公司( KCCS )即於 7 月 10 推出企業網路管理軟體,除可偵測內部電腦是否安裝 Winny 外,亦可阻絕已安裝 Winny 的電腦連接至企業網路。

日本建立物聯網產品資安符合性評鑑及標籤制度(JC-STAR),助消費者提升產品資安識別

日本建立物聯網產品資安符合性評鑑及標籤制度(JC-STAR),助消費者提升產品資安識別 資訊工業策進會科技法律研究所 2025年10月30日 壹、事件摘要 為因應物聯網(Internet of Things,簡稱IoT)產品日趨嚴重的資安威脅,日本陸續訂定針對物聯網產品資安之國內法規與政策方針,除了為強化物聯網產品之資安要求以外,藉由具體的資安評級要求,適用不同類型的物聯網產品,再透過資安標籤制度以區別產品,提升產品之資安識別,以供消費者選購時參考。據此,本文觀測日本近期建立的JC-STAR制度與其所適用國內法規,供我國未來參考與借鏡。 貳、重點說明 一、日本JC-STAR制度背景與目的 日本資訊處理推動機構(独立行政法人情報処理推進機構,Information-Technology Promotion Agency, Japan,簡稱IPA),依日本經濟產業省於2024年8月23日所公布之《IoT產品資安符合性評鑑制度建構方針》政策架構下[1],建立了《物聯網產品資安符合性評鑑及標籤制度》(セキュリティ要件適合評価及びラベリング制度,Labeling Scheme based on Japan Cyber-Security Technical Assessment Requirements,簡稱JC-STAR),並於2025年7月29日完成《物聯網產品資安符合性評鑑與標籤制度之基本規章》[2](セキュリティ要件適合評価及びラベリング制度の基本規程,簡稱本規章)之最終修訂,建立了JC-STAR制度的框架。本規章將物聯網產品的定義、產品所需的附隨服務(含數位服務等)、可提供驗證服務之單位、第三方監督、廠商自我宣告機制、資安符合性基準、評鑑與評鑑報告書、資安符合性標籤及分級機制等多種要件、適用對象與要求事項明確化,確立了以星等為評級的JC-STAR資安標籤制度框架。此外,JC-STAR制度針對物聯網產品採購方、使用方等不同的資安需求,透過附有資安標籤的產品以供各自選購時為考量,因此JC-STAR制度有以下二點優勢: (一) 較易滿足政府或企業的採購標準 針對政府機關或企業等所需採購的物聯網產品,事前已透過共通性的適用標準,將物聯網產品資安進行評鑑分級,並將評鑑流程可視化管理,不僅使產品符合各組織或單位的資安防護需求,同時使產品選購更加便利。 (二) 確保特定領域事業或行業等符合資安法規要求 基於特定領域事業或行業可能有特殊的資安需求,通過符合性評鑑的物聯網產品,因經第三方驗證後以最高等級的標籤呈現,故可確保符合特定領域事業團體之特殊資安需求,或配合指定使用,以確保其採購之物聯網產品均具備合規性。 二、日本JC-STAR框架與資安要求 日本JC-STAR制度是結合歐洲電信標準協會(ETSI)網路安全技術委員會於2022年6月所公布的《網路安全暨隱私保護標準》(ETSI EN 303 645),以及美國國家標準與技術研究所(NIST)於2022年9月公布的《消費者物聯網產品之核心基準》(NISTIR 8425)等適用標準,並經日本官方改定調整成為適用於日本國內之獨特制度。[3]JC-STAR是基於日本官方所定義之物聯網產品符合性標準(涉及資安技術要求事項等),確認物聯網產品是否符合資安要求以及進行可視化的管理。JC-STAR將物聯網產品區分成四種星級,詳述如下: (一) 一星級(★1) 物聯網產品須符合產品共通性之要求,並適用最低限度之資安要求事項,倘若產品已滿足相關要求事項,由產品供應商自我宣告即可。 (二) 二星級(★2) 視物聯網產品的類型、功能特徵等因素,於一星級以上增訂基礎的資安要求事項,倘若產品已滿足相關要求,仍由產品供應商自我宣告即可。 (三) 三星級(★3) 視物聯網產品的使用對象,包含政府機關、關鍵基礎設施或相關業者、地方政府或人民團體、大型企業之關鍵系統等,依產品類型、功能特徵等因素,訂定共通性之資安要件,並須由獨立第三方進行驗證,並須取得評鑑機關作成的符合性評鑑報告書以及受相關單位賦予標籤。 (四) 四星級(★4) 適用程序上雖與三星級相同,依產品類型、功能特徵等因素,訂定共通性之資安要件,並由獨立第三方進行驗證,須取得評鑑機關作成的符合性評鑑報告書以及受相關單位賦予標籤。惟物聯網產品中,諸如通信設備等所適用的資安要求及相關風險層級較高,因此為最高防護等級。 值得注意的是,日本正積極與新加坡、英國、美國、歐盟等各國專責機關等交涉中[4],預計將JC-STAR制度與各國物聯網產品制度相互承認並使其與國際接軌。 參、事件評析 日本透過國內政策方針及訂定規章,結合其他先進國家的資安標準,建立了屬於日本自己的物聯網產品資安標籤JC-STAR制度。主要將各種不同類型的物聯網產品,賦予不同星等評級,供一般消費者或政府、企業法人等選購時參考,具體提升針對物聯網產品的資安識別。此外,依產品適用對象或風險層級不同,適用不同程度的資安要求事項。倘若涉及政府或企業法人等採購需求,則可能適用三星或四星等級,且產品均須經獨立第三方進行評鑑後,才能取得符合性評鑑報告書,並添附資安標籤。 因此,JC-STAR並非僅針對政府或公部門單位採購適用,而是擴及日本國內產業或是一般消費者,因此日常中物聯網產品的使用,均受到全面性的資安保障。另一方面,倘若未來日本JC-STAR制度受到其他各國承認,即代表物聯網產品可在已簽署承認的國家間受到信任而流通產品,故可望大幅降低日本國內物聯網產品供應鏈符合國際法規或契約要求的成本,有助於提升產業競爭力。據此,日本以資安標籤提升消費者識別,並有物聯網產品資安驗證機制之整體性規劃,均可供我國推動物聯網產品資安治理政策之未來借鏡與參考。 [1]〈IoT製品に対するセキュリティ適合性評価制度構築方針〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/sangyo_cyber/wg_cybersecurity/iot_security/pdf/20240823_1.pdf (最後瀏覽日:2025/10/13)。 [2]〈セキュリティ要件適合評価及びラベリング制度の基本規程〉,独立行政法人情報処理推進機構,https://www.ipa.go.jp/security/jc-star/begoj90000003563-att/JSS-01.pdf (最後瀏覽日:2025/10/13)。 [3]〈IoT製品のセキュリティ確保に向けて ~セキュリティ要件適合評価及びラベリング制度(JC-STAR*)の紹介~〉,頁25,独立行政法人情報処理推進機構,https://www.ipa.go.jp/security/jc-star/begoj9000000gg60-att/JC-STARsetumeikai_1.pdf (最後瀏覽日:2025/10/13)。 [4]〈ファクトシート:岸田総理大臣の国賓待遇での米国公式訪問〉,日本外務省,https://www.mofa.go.jp/files/100652150.pdf (最後瀏覽日:2025/10/13)。

從「數位休閒娛樂產業」之法制需求談我國娛樂業法制規範之可能性

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP