美國實務界律師2023年6月9日撰文指出,人工智慧(artificial intelligence,簡稱AI)將對智慧財產法律和策略帶來改變,大部分企業熟悉的改變是目前仍有爭議的法律問題—由AI工具產生的發明創造是否為專利或著作權適格的保護標的。但除此之外,AI工具對於創建和管理智慧財產組合(IP Portfolio)的方式也已發生改變,並介紹以下五種利用AI工具協助管理智慧財產組合之方式。 1.簡化先前技術之檢索 無論是評估新產品的可專利性、評估競爭對手之智慧財產權之相關風險、抑或是回應侵權索賠,企業均須了解特定領域之先前技術,因應此需求,全球已有大量公司提供先前技術檢索服務,惟AI工具的出現使得企業可自行進行先前技術檢索。例如知名的文件審查平台Relativity創造了Relativity Patents,使用者輸入專利號碼等特定關鍵字即可進行先前技術檢索;美國專利商標局亦為了審查官開發一種AI工具,提升其確認先前技術之準確性及效率。 2.協助專利申請文件撰寫 對於專利申請人而言,可使用AI工具協助草擬專利申請範圍,有些企業甚至會運用AI工具自動化撰寫專利申請文件,惟使用AI工具撰寫專利申請文件時,應留意提供AI工具的資料是否會保密,抑或有向第三人提供之風險。此外,AI工具撰寫之內容建議仍須雙重確認內容正確性及適當性,如引用來源及內容是否正確。 3.改善商標維權能力 企業可使用AI工具協助監控潛在的侵權及仿冒產品,有鑒於現今網站及社群媒體仍有大量未經商標授權的賣家存在,AI工具可作為審查貼文及識別商標侵權案件之工具,相較於傳統的人工審查可更有效率。 4.協助商標檢索作業 於美國、澳洲、歐盟、中國,甚至世界智慧財產組織導入AI工具協助審查官進行商標審查,包括以關鍵字及影像標記之搜尋功能,此一工具不僅可簡化商標申請和註冊審查程序與時間,亦有部分國家提供使用者自行檢索之功能,使企業可進行更快速、有效率之商標檢索,使其於品牌保護策略上節省不必要之時間及金錢。 5.支持策略性專利組合管理 AI工具亦可協助專利組合管理,包括最廣的專利範圍、評估是否需繼續維護專利、或是評估擬收購專利之價值,以AI工具協助評估以上事項,雖無法完全取代人工進行策略評估,惟可顯著減少勞動力支出。 AI工具改變了智慧財產組合創建及管理之方式,雖然AI工具不能完全承擔管理智慧財產權組合之職責,但AI工具在專利/商標檢索、專利申請文件撰寫、專利權評估、商標維權等方面已可大量減少人力及管理成本,有助於企業智慧財產組合管理,惟企業及使用者須留意使用AI工具的資料管理問題,以避免機密資訊遭到外洩。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國聯邦加強導入節能績效保證專案,並規劃採購實務增訂規範美國總統歐巴馬於2011年12月發布備忘錄(Presidential Memorandum),要求美國聯邦政府應加強「導入節能績效保證專案(Implementation of Energy Savings Projects and Performance-Based Contracting for Energy Savings)」,並宣布未來24個月內最少將投入20億(billion)美元經費,推動聯邦機構採購實施節能績效保證專案,以改善建築物能源效率。基於政策指示,美國能源部(Department of Energy)下屬聯邦能源管理推動機構(Federal Energy Management Program,以下簡稱FEMP),研議規劃配套機制,協助導入「節能績效保證專案(Energy Savings Performance Contract,以下簡稱ESPC)」,更精簡、效率、低成本之實施模式,並助益美國能源技術服務產業(Energy Service Companies,以下簡稱ESCO)發展。 美國FEMP於2012年2月公告ESPC採購關於「資金(Financing)」部分之「資訊徵求意見書(Request for Information,RFI)」,廣詢實務各界意見,希望能繼而落實於政府採購規範及契約範本之研議,並協助ESCO業者能更順利取得資金,並協助ESCO業者能更順利取得資金,及降低資金取得成本,如此亦可有利益於所採購導入之聯邦機構。 FEMP主要係規劃探討關於ESPC融資資金,最合理且有吸引力之利率,所應考慮各項要件及利率定價模式,並且規劃建立資金協助者之優先名單(Preferred Financiers),以利配套選用。再者FEMP為推動整合,特別探討ESPC跨專案(Project Aggregation (Combining))時,可能影響資金協助者之融資與財務評估,例如數ESPC專案、數ESCO業者、由同一資金協助者承接,或是數ESPC專案、數實施地點、同一ESCO業者,同一資金協助者,亦或者數ESPC專案、數實施地點、數ESCO業者、但同一政府機構、且同一資金協助者,研析相關影響要件。 以及,FEMP並探討ESPC實施「量測驗證(Measurement and Verification),對於取得融資評估過程是否增加複雜影響因素,以及資金協助者對於量測驗證機制,是否認為將增加風險並致更高融資利率,均為重要探討議題。此項意見徵求書,未來將落實於聯邦機構政府採購之實務規範上,相關內容再持續觀察追蹤。
<開原碼條例>建置醫療資源共享架構UCLA醫學中心以開放原始碼軟體Zope建置資訊系統,展開一項稱為「治療成效開放式架構」(OIO, Open Infrastructure for Outcomes) 的計畫,構築起未來醫療資訊系統的新基石。讓治療成效的資訊,能在一個共通的平台架構上進行資源分享。 長期以來,醫療資訊系統面臨的挑戰主要來自於下列三個面向:一、如何讓資訊系統提供令人滿意的服務功能,以取代將醫療記錄登載在紙張上的傳統方式。二、資訊系統的需求經常會改變,如何快速因應系統的改變需求。三、如何與其他醫療團隊夥伴,共同分享資料與工具。 OIO計劃透過資訊共享可加速醫療研究。開放式架構計畫的主要目的,並不是用來要求臨床工作者與醫療研究中心分享病歷資料,而是提供一個分享管理工具的機制,讓使用者能夠利用這些管理工具,進行資料的收集與分析,並和特定的診療研究人員進行溝通,而透過系統安全的機制,在過程當中並不會讓其他人得知資料內容。不過,如果有人想要進行管理工具或資料的進一步加值利用,僅需額外投入相當小的成本。 另外, 開放式架構計畫的設計極具彈性,除了目前所專注的治療成效資訊統計之外,其系統概念也可以用來管理客戶資訊、進銷存資訊、會計資訊等。整個系統開發環境是針對使用者而設計,而非程式人員,並且以網頁應用程式來實作,力求操作的便利性,目的之一是讓使用者能夠動手創造出自己所需的表格資料。另一方面,設計上也面對來自於法律與技術層面的挑戰,例如取得病患的同意及對系統的信任感,促使這套系統在實作時,必須能夠提供高度的修改彈性與安全性。 由於 OIO 在設計上,包含低成本、高效益、使用者導向、架構具有彈性等特色,並以開放源碼開發模式來鼓勵使用者測試及提供回饋意見,目前的應用效果持續擴大中。
美國第三州!科羅拉多州正式通過《科羅拉多州隱私法》美國科羅拉多州州長於2021年7月正式簽署《科羅拉多州隱私法》(Colorado Privacy Act, CPA)草案,科羅拉多州正式成為美國第三個制定全面性隱私專法的州,該法將於2023年7月1日施行。 隨著全球化及科技快速發展,以及大數據的應用趨勢,資料的蒐集、處理、利用規模及範圍逐漸擴大,全美各地隱私保護規範遍地開花,期待能促使企業在「保護個人資料」與「資料自由流通」及「資料商業運用」中取得平衡。 2018年美國加州首先制定《加州消費者隱私保護法》(California Consumer Privacy Act, CCPA)成為全美第一州級隱私保護專法後,包含華盛頓州、伊利諾州、紐約州等,也都提出各該州級隱私保護法案,而美國維吉尼亞州議會於今年2月通過《消費者資料保護法》(Consumer Data Protection Act, CDPA)法案,並在3月經由州長簽署,正式成為美國第二個擁有隱私保護專法的州,該法預計於2023年1月1日生效。 科羅拉多州於今年6月將CPA草案送交州長簽署後,於7月順利成為第三個通過隱私保護專法的州。一旦CPA生效,消費者除將享有近用權(right of access)、更正權(right of correct)、刪除權(right of delete)、資料可攜權(right of data portability)外;CPA規定在資料控制者對其消費者進行目標式廣告(targeted advertising)、銷售消費者個人資料,或者將對消費者決策產生重大影響時,消費者享有選擇退出權(right to opt out)。 整體而言,儘管 CPA 與CCPA及CDPA規範相似,在隱私保護規範上可能不是特別具有開創性,但CPA反映了美國各州強化隱私保護的趨勢與決心。舉例而言,去(2020)年不僅美國大選結果受矚目,美國各州隱私保護相關公投案,包含《加州第24號提案》、麻州《汽機車機械資料》、密西根州《電子資訊搜索票》及緬因州波特蘭市《臉部辨識禁令》也獲通過。美國在尚未具有統一聯邦隱私保護法下,透過州級隱私立法,保有各州特色並作為各州隱私保護執法依據。