性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化

刊登期別
第28卷,第10期,2016年10月
 
隸屬計畫成果
經濟部技術處產業科技創新之法制建構計畫計畫成果
 

※ 性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7766&no=55&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
FCC發布命令以保護電話中繼服務基金

  科技為民眾帶來溝通的便利性,卻因不夠人性化,常使身心障礙人士無法享受無遠弗屆的服務。因此,為了使身障者易於與他人溝通,FCC推動電信轉接服務( (Interstate Telecommunications Relay Service),讓通訊科技更易於使用。藉由電話中繼服務基金(Interstate Telecommunications Relay Service Fund)的支持,提供文字電話轉接(Text Telephone) 、語音轉語音(Speech-to-Speech)、電話字幕服務(Captioned Telephone Service)、視訊轉接服務(VideoRelay Service)與網路轉接字幕電話服務( Internet Protocol Captioned Telephone Service,下述簡稱IPCTS),協助聽障、語言障礙民眾得以享有電信服務。   但是,近幾個月來,FCC發現電信商要求IPCTS的補助與日俱增,從2012年6月起,每個月成長約11%,且導致10月時面臨請求總支出超過預算4百萬美元之危機。為了解決電話中繼服務基金(Interstate Telecommunications Relay Service Fund)面臨嚴重資金不足的威脅,FCC在2013年01月25日公佈FCC 13-13法規制定建議通知(Notice of Proposed Rulemaking),希望藉由下述規定,短暫性解決民眾過度、不當取得服務之問題: 1.禁止推薦獎勵計畫:禁止業者給予獎勵、回報的方式,鼓勵民眾使用網路轉接字幕電話服務。 2.供應商提供IPCTS服務,需符合三要件,方可取得補助: ‧ 每位使用者均需登記方能取得服務。 ‧ 供應商需取得用戶自我認證,才能完成註冊程序。 ‧ 使用者並非使用從政府計畫中取得IPCTS設備,而其設備卻低於75美元時,供應商需從使用者取得公正第三方證明。 3.供應商提供設備與軟體,必須於每通電話完成後,可以自動關閉。亦即消費者每次使用時,均需經過開啟的步驟,以保護隱私。   在FCC適度處理IPCTS不當使用後,可以預見電話中繼服務基金更能發揮所需,此舉不僅使科技更貼近於大眾、減少溝通障礙外,更可落實普世價值,使美國社會福利更加完善。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

澳洲規劃研修「國家重型車輛法」並探討科技設備檢測疲勞駕駛相關規範

  澳洲國家交通委員會(National Transport Commission)與警覺、安全、生產力合作研究中心(Cooperative Research Centre for Alertness, Safety and Productivity ,Alertness CRC)於2016年12月攜手研究重型車輛駕駛員之疲勞駕駛影響,並特別探討科技設備檢測及因應的可行性,並著手研析重型車輛疲勞駕駛管理相關規範之評估規劃。   依據澳洲國家重型車輛法(Heavy Vehicle National Law,HVNL)規定,設有國家重型車輛管理獨立機構(The National Heavy Vehicle Regulator,NHVR)針對總重4.5噸之重型車輛進行規範監管。依國家重型車輛疲勞管理規則【Heavy Vehicle (Fatigue Management) National Regulation】規定針對1.超過12噸總重額(Gross Vehicle Mass,GVM)之重型車輛2. 車輛及聯結物超過12噸者3.超過4.5噸可乘載12名成人(包含司機)之巴士4.超過12噸總重額定值之卡車及聯結車,其附接工具或機械者,必須進行疲勞管制,其他對於有軌電車、工具機械車輛(例如:推土機、拖拉機)、露營車等則不在此管制對象。該法針對重型車輛工作和休息時間、工作及休息時間之紀錄、疲勞管理豁免(Fatigue management exemptions),及公司、負責人、合夥人、經理等的連帶責任,訂有相關規範。疲勞管理規則的規範核心在於駕駛員不能在疲勞的情況下行駛重型車輛,故即使符合工作和休息限制,駕駛員也可能因疲勞而受影響。   目前,因有限的證據表明工作安排對於重型車輛駕駛員疲勞的影響程度,亦很少有研究使用客觀和預測技術測量駕駛員的警覺性和疲勞,另對於駕駛員睡眠的質量和時間最低要求的資訊亦不足。因此,現行法律規範對重型車輛駕駛員疲勞的影響將受到挑戰。故警覺、安全、生產力合作研究中心將採取更精準的警報檢測方法和睡眠監測設備,進行相關研究測試,以作為未來國家重型車輛疲勞管理規則修訂之依據。   駕駛疲勞所引發的交通事故時有耳聞,往往造成重大危害與耗費社會成本。目前實務上已有利用科技設備偵測是否有疲勞駕駛情形,然而更重要的是,應落實行車前的疲勞管制,及相對應的解決方案,並加強公司及相關管理者之監督義務及連帶責任,才能有效降低疲勞駕駛肇事率,確保道路安全。

西班牙AEPD增加關於健康和個人資料保護關注領域

  西班牙個資監管機關(Agencia Española de Protección de Datos, AEPD)於2022年5月3日增加健康和個人資料保護有關的關注領域。觀2021年,計有680件與健康資料相關之爭議案件,與2020年相比增長了75%,又因健康資料為特殊類型之個人資料,故更應嚴加保障。   該領域的內容適用於公民、資料控制者、資料保護專業人員、健康中心或製藥行業等,共分六小節: 一、第一小節概述了與健康資料有關的權利,解釋了歐盟一般個人資料保護規則(General Data Protection Regulation, GDPR)第9條及西班牙當地規範有關處理健康資料定義、如何行使醫療記錄近用權(Right to access),以及與醫學研究相關的問題,其中規定了患者在使用資料和臨床文件方面權利和義務、在近用權被拒絕情況下如何向AEPD申訴、臨床病史保留及刪除權利之限制等。 二、第二小節重點介紹AEPD公布的相關報告和指南,包括勞資關係中之個人資料保護指南,及有關臨床病史、臨床試驗等相關主題之報告。 三、第三小節則著重在AEPD於新型冠狀病毒肺炎(COVID-19)爆發後,製作大量與COVID-19相關之聲明文件及法律報告,故在此彙整相關資料,以協助落實個人資料之保障。 四、第四小節健康研究和臨床試驗,其中彙編了相關指南,以及規範臨床試驗和其他臨床研究以及藥物安全監視所涉個人資料保護行為準則。 五、第五小節講述與健康狀況有關之申訴、賠償紀錄部分,其中包括AEPD收到多項涉及已故患者直系親屬近用醫療記錄之權利或醫療專業人員非法獲取臨床病史和醫療記錄之投訴。 六、第六小節側重於醫療組織洩露個人資料議題,概述了資料控制者之義務以及為確保遵循GDPR而應採取之措施,另強調以特殊方式處理健康資料之活動,如電子健康紀錄、物聯網醫療所使用之行動裝置或雲端等存取設備,皆存在外洩之風險因子。

TOP