淺談攻擊性商標

  對於商標權之內容是否涉及對特定人士的產生不快或冒犯,以及國家是否有權禁止其註冊為商標之問題,我國法係在商標法第30條第1項第7款中規定,商標妨害公共秩序或善良風俗者,不得註冊;並經由經濟部智慧財產局訂定「商標妨害公共秩序或善良風俗審查基準」,建立認定準則,並認為應「考量註冊當時之社會環境,並就其指定使用商品或服務市場之情況、相關公眾之認知等因素綜合判斷」。

  而在美國法中,亦有 Lee v. Tam一案,針對美國專利商標局 (United States Patent and Trademark Office, USPTO)是否有權依照 The Lanham Act第2條a款規定駁回商標申請的權利進行爭執,該條規定「包含不道德、欺騙、誹謗性、貶損或誤導他人(不論生死)、組織、信仰或國家象徵等意涵、或導致前者名譽受損之圖案,不可註冊為商標」。

  該案在2015年12月22日於美國聯邦巡迴上訴法院進行判決,法院認為,儘管是具攻擊性的歧視言論,亦受到美國聯邦憲法第一修正案所保障,故美國政府不得以商標圖案的言論內容具攻擊性為理由,拒絕商標的註冊。本案經上訴於美國聯邦最高法院,最高法院於2016年9月29日已經同意其提起上訴,將對本案進行審理。

本文為「經濟部產業技術司科技專案成果」

※ 淺談攻擊性商標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7767&no=64&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
英國國家統計局政府資料品質中心發布《政府資料品質框架》

  英國國家統計局(Office for National Statistics)轄下之政府資料品質中心(Government Data Quality Hub)為實踐英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)發布之《國家資料戰略》(National Data Strategy),於2020年12月3日釋出《政府資料品質框架》(The Government Data Quality Framework),以達成國家資料戰略中「資料基礎(Data Foundation)」之核心目標。該框架提出「資料品質原則」(Data quality principles),旨在解決目前政府資料品質低落的問題。該原則包含以下五點: 一、確保資料品質:機關內部應建立有效的資料治理機制,例如培訓員工具備管理資料的能力、持續改進資料品質等。 二、了解使用者需求:機關應將使用者對資料品質的需求視為優先處理事項。 三、評估資料於資料生命週期各階段之品質:機關應密切關注資料於生命週期各階段之品質,並與使用者及利益關係人交換意見。 四、持續溝通資料品質:機關應持續與使用者交流資料品質現況,提供使用者有效的文件及中繼資料(metadata)。 五、了解造成資料品質低落的主因:分析造成資料品質低落的根本原因,從源頭徹底解決資料品質問題。   英國國家統計局政府資料品質中心希望藉由本框架揭示的資料品質原則,提升政府機關人員主動辨別及解決資料品質問題的能力,以改善政府資料品質、為人民帶來更高品質的資料,釋放資料價值並促進社會經濟發展。

生物識別技術走進零售業

  近期幾家大信用卡公司遭駭客入侵,使得消費者受到了越來越大的身份被盜用的威脅。對此,能使購物更加安全的技術,特別是生物識別技術,包括電影中常見到的虹膜掃描,以及相對普及的指紋,聲音,臉部特徵識別等,越來越引發了人們的興趣。   目前,美國第二大零售連鎖店 Albertson 已經和其他數百個零售商一起加入了生物識別付款的試點行列。該公司發言人表示,新付款方式則大大加速了結帳的速度;另外也可以自動識別是否賣菸酒給未成年人。   不過生物識別技術的根本的缺陷在於隱私問題,因?這項技術意味著對個人資訊的集中儲存。而這個系統必然會成?駭客和其他居心不良者的「蜜罐」,一旦這個儲存系統被攻破,並將受害者的生物資訊惡意更改,受害者將面臨身份被終極盜用的噩夢。

歐盟對於不可申請專利的基本生物學方法做出新解釋

  大多數國家是認為動植物為法定不得授予專利之標的,歐盟以往因為歐洲專利公約實施細則(Implementing Regulations to the Convention on the Grant of European Patents,下簡稱實施細則)跟擴大上訴委員會(the Enlarged Board of Appeal,簡稱EBA)決定不一致而造成爭議,EBA於2020年5月做出的新決定,對於動植物是否為可授予專利之標的做出一致性解釋。   在歐洲專利公約(European Patent Convention,簡稱EPC)第53條第2款規定用以生產動植物的基本生物學方法不可授予專利,並於2017年生效的實施細則第28條第2項將其進一步擴張解釋成,僅運用基本生物學方法所產生的動植物不可授予專利,這與EBA在2015年所做出的決定(G 2/12、G 2/13)並不一致,在2015年的決定中提到,運用基本生物學方法來界定動植物的請求項仍可以被接受,因此實施細則第28條第2項與2015年的決定產生衝突。   於2019年,技術上訴委員會(Technical Board of Appeal)在案例T 1063/18中發現了這個問題,並提到EBA討論,EBA表示,考慮到法條涵義可能因時間產生變化,需要對EPC第53條第2款進行動態解釋(dynamic interpretation),實施細則第28條第2項與EPC第53條第2款並未矛盾,而是進一步擴展為,僅通過基本生物學過程,或是由基本生物學方法界定動植物之情況,皆屬於不可授予專利之情況,而推翻之前的決定。而為維持法律安定性,本決定(G 3/19)對於2017/07/01前生效或申請的案件並不具效力。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

美國勞工部發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」文件,要為雇主和員工創造雙贏

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國勞工部(Department of Labor)於2024年10月發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」(Artificial Intelligence and Worker Well-Being: Principles and Best Practices for Developers and Employers)參考文件(下稱本文件)。本文件係勞工部回應拜登總統2023年在其《AI安全行政命令》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)中對勞工的承諾,作為行政命令中承諾的一部分,本文件為開發人員和雇主制定如何利用人工智慧技術開展業務的路線圖,同時確保勞工可從人工智慧創造的新機會中受益,並免受其潛在危害。 本文件以八項AI原則為基礎,提出最佳實踐作法,其重點如下。 1. 賦予勞工參與權(empowering workers):開發人員和雇主履行各項原則時,應該秉持「賦予勞工參與權」的精神,並且將勞工的經驗與意見納入AI系統整個生命週期各環節的活動中。 2. 以合乎倫理的方式開發AI系統:開發人員應為AI系統建立標準,以利進行AI系統影響評估與稽核,保護勞工安全及權益,確保AI系統性能符合預期。 3. 建立AI治理和人類監督:組織應有明確的治理計畫,包括對AI系統的人類監督機制與定期評估流程。 4. 確保AI使用透明:雇主應事先告知員工或求職者關於AI系統之使用、使用目的及可能影響。雇主及開發人員應共同確保以清晰易懂的方式公開說明AI系統將如何蒐集、儲存及使用勞工的個資。 5. 保護勞工和就業權利:雇主使用AI系統時,除應保障其健康與安全外,不得侵犯或損害勞工的組織權、法定工資和工時等權利。 6. 使用AI以提升勞工技能(Enable Workers):雇主應先了解AI系統如何協助勞工提高工作品質、所需技能、工作機會和風險,再決定採用AI系統。 7. 支援受AI影響的勞工:雇主應為受AI影響的勞工提供AI技能和其他職能培訓,必要時應提供組織內的其它工作機會。 8. 負責任使用勞工個資:開發人員和雇主應盡責保護和處理AI系統所蒐集、使用的勞工個資。

TOP