為表明促進公平競爭及保護境內消費大眾利益之決心,美國聯邦貿易委員會(Federal Trade Commission;簡稱FTC)於今(2010)年7月27日時,正式提出一項聲明,其內容,除詳細說明其近來為促進競爭及保護境內消費大眾利益所為之各項工作外,亦正式將『終止過往於品牌藥廠與學名藥廠間所為之給付遲延訴訟和解協議』列為『最優先』處理之反競爭事項」。 根據FTC所蒐集之資料顯示,單自今年元月份起算,至今,於美國境內各大品牌藥廠及學名藥廠間所簽訂之訴訟和解協議中,已有21件藥品專利訴訟協議,因涉及以「補償金」(Compensation)來作為和解條件,而成為FTC進一步調查之對象;此外,與前一會計年度中所達成之訴訟和解協議相較,除於數量上,呈現有增無減之趨勢外;FTC方面也證實,在各方藥廠採取另一類藍海策略且不再相互為市場競爭之前提下,此類和解協議已為境內各藥品廠商減省下約90億美金之競爭成本。 而進一步觀察FTC於近期內蒐集之新資訊後顯示,除以「補償金」模式來作為達成訴訟和解協議之條件外,可能還存在著另一種形式之訴訟和解協議;亦即,於藥廠間新近所簽定訴訟和解協議中,並不必然包含由品牌藥廠為一定金額給付之項目;根據實務統計,於2010年美國會計年度前9個月內所達成之各訴訟和解協議中,確實有近75%之訴訟和解協議,於協議條件或項目上,並未包含任何有關品牌藥廠對競爭學名藥廠和解金之給付;對此,FTC表示:「從各種跡象及數據顯示,目前於各藥廠間,確已衍生出數種新型態且具潛在反競爭可能之訴訟和解協議」;故從FTC將持續致力對此類不當訴訟和解協議為反競爭調(審)查之角度來看,未來,勢必將面臨更多且更嚴苛之挑戰。 最後,Leibowitz強調:「此類不當訴訟和解協議如同正快速擴散之傳染病一般,若完全聽任其發展而不加處理,日後定有越來越多藥品之上市,將受其影響;同時,就藥品價格之決定,最終亦將與自由市場競爭機制脫鉤;如此,除將間接導致公眾近用低價藥品困難度之提升外,亦將一併造成病患長期用藥成本負擔之增加」。
美國聯邦最高法院於Michigan v. EPA案中認定減碳措施需先考量成本效益 日本製鐵收購美國鋼鐵案簡介日本製鐵收購美國鋼鐵案簡介 資訊工業策進會科技法律研究所 2024年09月30日 日本製鐵(日本製鉄,以下簡稱日鐵)於2023年12月宣布對美國鋼鐵(United States Steel Corporation, U.S. Steel)之收購計畫,此舉引發美國鋼鐵工人公會(United Steelworkers Union, USW)強烈反對。美國總統拜登及副總統賀錦麗(民主黨總統候選人),以及共和黨總統候選人川普亦陸續發表聲明,反對此項收購計畫。 上述收購計畫為今(2024)年美國總統大選備受關注的議題之一,本文將簡單介紹事件摘要、本案可能涉及之經濟安全問題及各方意見,以及目前最新進展。 壹、事件摘要 U.S. Steel為美國指標性鋼鐵企業,近年受到產業結構改變影響持續虧損,最終於2023年8月宣布出售。日鐵為進軍美國電動車鋼品市場,於2023年12月18日發表將收購U.S. Steel,消息曝光後引發美國各界嘩然,白宮更於同年12月21日表示此項收購可能影響國家安全和供應鏈可靠性,應嚴格進行審查。 日鐵收購之U.S. Steel計畫將同時由美國司法部審查是否違反反托拉斯法,以及由美國外資投資委員會(Committee on Foreign Investment in the United States, CFIUS)根據《外國投資風險審查現代化法》(Foreign InvestmentRisk Review Modernization Act of 2017, FIRRMA)審查是否影響經濟安全,導致美國技術經由投資或併購不當流出。 CFIUS原訂於今(2024)9月23日完成審查,惟CFIUS於8月31日向日鐵表示,此項收購計畫可能降低美國國內鋼鐵產能,影響交通、建築和農業等領域之鋼鐵供應,存在經濟安全上之隱憂。根據歐美媒體報導,美國總統拜登可能發布中止收購之行政命令,故日鐵重新向CFIUS申請審查,將審查期間延長為90天,讓本案可以在美國總統大選結束後做出決定,以降低政治影響。 貳、 重點說明 一、收購計畫涉及之經安問題及日鐵回應: CFIUS係依據《1950年國防生產法》第721條(section 721 of the Defense Production Act of 1950)、第11858號行政命令(Executive Order 11858)以及《聯邦法規》第31編第8篇(chapter VIII of title 31 of the Code of Federal Regulations.)組成之跨部門委員會,其任務為審查外資收購美國公司是否構成國家安全威脅,避免外國人透過併購或投資等方式控制美國企業。 針對日鐵收購US Steel一事,CFIUS於8月31日致函日鐵和US Steel,指出可能存在兩大經濟安全上之問題: (一)降低美國鋼鐵產能:因日鐵擴大對印度市場投資並收購當地鋼鐵廠,CFIUS擔心其可能將美國鋼鐵產線轉移至印度,進而影響美國產能。針對上述疑慮,日鐵承諾將額外投資27億美元,用於更新US Steel的老舊設備及生產據點,並優先在美國國內生產。 (二)關稅問題:CFIUS指出US Steel過去曾要求美國提高對中國廉價鋼材產品之關稅,惟日鐵表示反對,擔心其可能會影響US Steel之決策。針對上述問題,日鐵表示不會干涉相關決策,並會在公司內設立由美國籍委員組成之「通商委員會」,以打消美方顧慮。 二、美國總統發布行政命令中止收購之影響及產業看法 在CFIUS提出對日鐵收購US Steel一事之疑慮後,據傳美國總統拜登擬發布行政命令中止此項收購計畫。由於行政命令發布後,日鐵將無法再以同一案件進行申請,即便想以CFIUS審查過程中存在問題為由,向聯邦法院提起訴訟,惟訴訟曠日費時且勝訴機率不高,收購計畫恐就此破裂。 由於美國以往多是禁止中國企業收購美國企業,如美國前總統川普於2018年3月12日發布行政命令禁止博通(Broadcom)併購高通(Qualcomm),若拜登就本案發布行政命令,將是首次禁止日本企業收購美國企業。 日本丸紅經濟研究所今村卓社長表示,若美國對作為同盟國的日本企業發布行政命令,未來須對併購鋼鐵等基礎產業抱持謹慎態度。日本經濟團體聯合會(日本経済団体連合会)、美國國際工商理事(United States Council for International Business)、全球商業聯盟(Global Business Alliance)等多個經濟團體亦致函美國財政部長,表達對政治壓力影響CIFUS審查結果之擔憂,並指出此行為可能會損害美國投資環境,並將美國經濟和勞工置於危險之中。 參、事件評析 根據美國商務部經濟分析局資料,去(2023)年美國獲外國直接投資5.4兆美元,其中日本為投資最多國家,投資金額高達7,833億美元,已連續5年居冠,顯示出在中美對抗情勢下,日美持續擴大合作之趨勢。 有輿論認為,拜登政府擬中止日鐵收購計畫一事,暴露出美國推動產業發展政策的矛盾之處。一方面,美國透過制定《降低通貨膨脹法》(Inflation Reduction Act; IRA)及《晶片與科學法》(CHIPS and Science Act)吸引外資;另一方面,則以經濟安全及供應鏈穩定為由,加強審查外國直接投資。 在中美對抗持續升溫下,美國勢必需要吸引包括日本在內之盟友國家之投資,以推動電動車、半導體等關鍵產業發展。惟若美國中止日鐵對US Steel之收購計畫,導致雙方破局,未來可能影響外國直接投資意願,進而影響美國產業轉型腳步。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).