日本經濟產業省於2016年11月14日召開第二次「自動駕駛商業檢討會」,邀請產官學研各界對於自動駕駛未來國際標準的動向以及諸如協調領域、社會接受度、制度和基礎建設等方面所涉議題,交換意見。
該檢討會首先注意到美國、歐洲以及韓國對於自動駕駛各式規則或指引制定的討論。在協調領域方面,檢討會指出:關於自動駕駛所需的地圖資訊,應由各汽車製造商協調,透過合作機制或規範來確保資訊與資金提供的公平性。
社會接受度方面,檢討會則提出建議考量是否需要針對不擅駕駛的高齡者或初學者,提供有效系統的必要性。在制度與基礎建設方面,檢討會則指出:以現狀而言,自動駕駛服務的商業永續性仍不明朗,必須持續進行實證試驗。
此外,為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於同年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於12月9日召開第一次會議。
該次會議討論的範圍包括:為實現無人駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。
會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「非平地道路間以車站為據點的自動駕駛服務」等議題速成立工作小組。
歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
受傷的機車騎士就機器自動駕駛的車輛控訴過失駕駛美國通用汽車公司(General Motors,下稱通用汽車)於2018年01月間向美國運輸部(United States Department of Transportation)遞出請求展示雪弗蘭(Chevrolet)第4代自動駕駛車(此款車種無裝備方向盤與踏板,號稱世界上第一輛可以自我安全駕駛,且無需人類介入駕駛的車輛)的申請,不久後關於以下車禍事件的訴訟即遭提起。 根據Oscar Willhelm Nilsson(即原告,下稱Nilsson)於2018年01月22日向美國舊金山區地方法院針對前開車禍事件提起訴訟的主張,於2017年12月07日早上,其在加州舊金山Oak Street的中央車道上騎乘機車往東行駛,Manuel DeJesus Salazar(即被告,下稱Salazar)於同時地駕駛由通用汽車製造之Chevrolet Bolt vehicle(下稱自駕車),並開啟自動駕駛模式且雙手放開方向盤。Nilsson原騎乘於自駕車後方,不久,自駕車自Nilsson正前方變換車道至左側,Nilsson則繼續筆直前行,但自駕車又隨即往回駛入Nilsson直行騎乘的車道,因此撞擊Nilsson摔倒在地。據此,Nilsson主張通用汽車公司欠缺對於自駕車的自我操作應符合交通法規及規定所賦之注意義務,換言之,自駕車前揭操作車輛駕駛的行為(未注意其他正在行駛的駕駛人而轉換至比鄰車道)具有過失,造成Nilsson受到嚴重的生理及心理損害,且無法工作,產生高額的醫療、護理費用,故請求法院判決原告即Nilsson之主張不少於7萬5千美元之損害賠償、懲罰性損害賠償、律師委任費用以及其他適當且公正之侵權損害賠償等有理由。 然而,根據先前加州車輛管理局所提之文件,通用汽車對Nilsson所描述之車禍經過提出了以下爭執,通用汽車表示自駕車側面有一條長磨損痕跡,應是當時右邊的車道正要匯入中央車道,而自駕車正在自我校正回車道中央,Nilsson卻騎乘機車從兩個車道中間切出來,導致與自駕車發生擦撞。此外,案發當時自駕車的時速為了順應車流而保持在每小時12英里(每小時19公里)行進,而摩托車卻是以大概每小時17英里(每小時27公里)行進,故自駕車應無不當駕駛之情形,反應由機車騎士Nilsson負擔肇事責任,因其未在確認安全之情況下,即從自駕車右側超車,以上通用汽車反駁Nilsson主張的結論,更與舊金山警察局的報告結果不謀而合,即舊金山警察局認為Nilsson在確定安全以前,就嘗試要超越自駕車。 此外,在前開訴訟提起前的2018年01月14日至01月20日的當週,加州車輛管理局表列出自2014年至2018年間的54起自動駕駛車意外報告,大部分的狀況係由駕駛人(而非自動駕駛車本身)對事故負責(雖開啟自動駕駛模式,但駕駛人仍在特定條件下需要自行駕駛)。 即便前開各個報告看似不利Nilsson,但Nilsson的律師Sergei Lemberg卻表示警方的報告應是有利Nilsson,因自駕車早在車禍發生前就已經發覺Nilsson,但卻沒有預留足夠的時間剎車與閃避,因此通用汽車公司所稱之主張並不足採信,更可見自駕車的行為是危險且難以被預測的。 就此,一位南加大研究自駕車法律問題的法律系教授Bryant Walker Smith表示,未來發生事故的時候,駕駛人在大多數的狀況下比較不會被苛責,但自動駕駛系統會被檢討應該可以做得更完善。 (註:本件訴訟仍在繫屬中,尚未判決。)
在英國種植基因改造作物可能無法可管英國衛報( The Guardian )指出,英國對種植基因改造作物之管制規範存在著漏洞。 1998 年歐盟曾經允許一批基因該造玉米在歐盟境內種植,將之列入歐盟的一般性種子目錄( the EU common catalogue of seeds ),該玉米由孟山都生技公司所研發,被稱為 MON 810 ;當時基因改造作物尚未受到大眾的注意,更未引起各國政府對基因改造作物的反省。對此,英國的環境食品農業事務部( Department for Environment, Food and Rural Affairs, Defra )指出對於這批歐盟所允許的基因改造作物,目前並沒有任何的規範可阻止其進口到英國境內,贊成或熱衷種植基因改造作物的人士,也可在不需通知主管機關或鄰近土地之所有人的情況下,合法種植自己希望的基因改造作物。農民只需在銷售或生產此種玉米時,遵守歐盟所頒佈之基因改造溯源與標示相關規則即可。對此,目前英國的環保團體與農民關心的焦點在於,英國目前並沒有區隔基因改造作物與非基因改造作物,及非基因改造作物受到污染時,計算賠償金範圍及數額等之規定,並呼籲英國政府重視此問題。
美國網路安全暨基礎設施安全局(CISA)發布《工控資安基礎:適用於擁有者與營運者的資產清冊指引》美國網路安全暨基礎設施安全局(CISA)於2025年8月13日發布該機關與美國、澳洲、加拿大、德國、荷蘭、紐西蘭等國共計八個國安資安相關機構,合作訂定之《工控資安基礎:適用於擁有者與營運者的資產清冊指引》文件,旨在針對易受惡意網路行為攻擊且提供重要服務的能源、水務、製造業及其他領域關鍵基礎設施營運技術(Operational Technology,OT)系統,協助其資產擁有者與營運者建置與維護完整的OT資產清冊,並輔以OT分類體系(Taxonomy)。 OT資產清冊範圍涵蓋組織OT系統與相關軟、硬體,該指引主要說明OT資產擁有者與營運者建置與維護OT資產清冊的流程,包含: 1. 定義清冊範疇與目標(Define Scope and Objectives) 2. 辨識資產及蒐集屬性資料(Identify Assets and Collect Attributes) 3. 建立分類體系(Create a Taxonomy to Categorize Assets) 4. 管理與蒐集資料(Manage and Collect Data) 5. 實現資產全生命週期管理(Implement Life Cycle Management); 此外透過OT分類體系可幫助區分優先序、管理所有OT資產,有助於風險識別、漏洞管理,以及資安事件應變;有關如何建立OT分類體系,該指引亦提供流程建議如: 1. 根據功能及關鍵性執行資產分類(Classify Assets) 2. 對資產功能類型與其通訊路徑進行分類(Categorize (Organize) Assets and their Communications Pathways) 3. 建構體系架構與互動關係(Organize Structure and Relationships) 4. 驗證資產清冊資料準確度與圖像化(Validate and Visualize) 5. 定期檢查並更新(Periodically Review and Update) 該指引認為,建置OT資產清冊並輔以OT分類體系對期望建立現代化防禦架構的擁有者與營運者而言至關重要。透過上述作為,資產擁有者與營運者得以識別其環境中應加以防護及管控的關鍵資產,並據以調整防禦架構,建構相應的資安防禦措施,以降低資安事件對組織任務(Mission)與服務持續性(Service Continuity)的風險與影響。該指引亦強調關鍵基礎設施之OT與IT(資訊技術)部門間之跨部門協作,並鼓勵各產業組織參考指引步驟落實OT資產盤點與分類,以提升整體關鍵基礎設施資安韌性。