日本經產省與國交省提出「自動駕駛推動發展與制度規劃」檢討報告

  日本經濟產業省於2016年11月14日召開第二次「自動駕駛商業檢討會」,邀請產官學研各界對於自動駕駛未來國際標準的動向以及諸如協調領域、社會接受度、制度和基礎建設等方面所涉議題,交換意見。

  該檢討會首先注意到美國、歐洲以及韓國對於自動駕駛各式規則或指引制定的討論。在協調領域方面,檢討會指出:關於自動駕駛所需的地圖資訊,應由各汽車製造商協調,透過合作機制或規範來確保資訊與資金提供的公平性。

  社會接受度方面,檢討會則提出建議考量是否需要針對不擅駕駛的高齡者或初學者,提供有效系統的必要性。在制度與基礎建設方面,檢討會則指出:以現狀而言,自動駕駛服務的商業永續性仍不明朗,必須持續進行實證試驗。

  此外,為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於同年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於12月9日召開第一次會議。

  該次會議討論的範圍包括:為實現無人駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。

  會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「非平地道路間以車站為據點的自動駕駛服務」等議題速成立工作小組。

相關連結
※ 日本經產省與國交省提出「自動駕駛推動發展與制度規劃」檢討報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7781&no=64&tp=1 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
精品珠寶業者攻防戰-卡地亞控訴蒂芙尼竊取營業秘密

  今(2022)年2月28日卡地亞(Cartier)控訴精品珠寶領域的競爭對手蒂芙尼(Tiffany & Co.),聲稱其在卡地亞前員工的幫助下,竊取獨家商品的營業秘密。   歷峰北美公司(Richemont North America Inc.)旗下的卡地亞今年2月28日於美國紐約州法院起訴蒂芙尼和卡地亞前襄理(Junior Manager)梅根瑪莉諾(Megan Marino),控訴瑪莉諾於跳槽前下載卡地亞的高級珠寶業務機密資訊, 並於去年11月加入蒂芙尼後將資訊傳送給新同事。蒂芙尼發言人發出否認聲明,卡地亞的指控毫無根據。   根據訴訟聲明,蒂芙尼聘請瑪莉諾負責包括單價高達1000萬美元(約新台幣2.8億)的高級珠寶系列,蒂芙尼法律部門從卡地亞獲得通報後,於今年2月份解僱瑪莉諾,但卡地亞聲稱,蒂芙尼的高階主管已經獲得大量的卡地亞機密和營業秘密資訊。   這並非卡地亞第一次指控跳槽至蒂芙尼的前員工試圖竊取營業機密。2014年,卡地亞起訴一名前廣告主管,據稱其試圖讓她的前助理隨身攜帶機密資訊一同加入蒂芙尼,該訴訟於次年和解。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟執委會提出《歐盟數位十年網路安全戰略》

  歐盟執委會於2020年12月16日針對未來十年歐盟數位發展,提出《歐盟數位十年網路安全戰略》(The EU's Cybersecurity Strategy for the Digital Decade),以支持塑造歐盟的數位未來(Shaping Europe's Digital Future)、歐洲復甦計畫(Recovery Plan for Europe)和歐洲安全聯盟(EU Security Union Strategy)。該戰略說明應如何加強歐盟共同抵禦面對網路攻擊的應變能力,並確保民眾及企業都能在可信賴的數位服務中受益。   由於COVID-19大流行,加速工作模式的變化,2020年歐盟約有40%的民眾遠距辦公,而同年網路犯罪對全球經濟造成的影響估計達到5.5億歐元。因此,為維護全球開放網路的穩定運作,在保護網路安全的同時,亦應保護歐盟的共同價值觀與人民的基本權利,在監管、投資與政策上提出三點建議: 韌性、技術主權和領導(Resilience, Technological Sovereignty and Leadership):根據網路與資訊系統安全指令(Directive on Security of Network and Information Systems, NIS Directive)修訂更嚴格的監管措施,改善網路和資訊系統的安全。並建立由AI推動的資安監控中心(AI-enabled Security Operation Centres),及時避免網路攻擊。 建立防禦、嚇阻和應變能力(Building Operational Capacity to Prevent, Deter and Respond):逐步建立歐盟聯合網路安全部門,加強歐盟各成員國之間的合作,以提高面對跨境網路攻擊時的應變能力。 透過加強合作促進全球開放網路空間(Advancing a Global and Open Cyberspace):希望與聯合國等國際組織合作,透過外部力量共同建立全球網路安全政策,以維護全球網路空間的穩定及安全。

美國專利商標局宣布快軌上訴試驗計畫

  美國專利商標局(The United States Patent and Trademark Office, USPTO)於今年7月1日發布新聞稿,即專利審判及上訴委員會(Patent Trial and Appeal Board, PTAB)開始加速處理單方上訴的計畫。該計畫名為「快軌上訴試驗計畫(Fast-Track Appeals Pilot Program)」並於今年7月2日正式啟動。   根據該計畫,專利審判及上訴委員會上訴裁決的目標時間預計為該上訴被賦予快軌(即批准加速審查)之日起六個月內,此與美國專利商標局之期望相符。蓋目前單方面上訴的裁決時間平均約14個月,因此,對於申請該計畫的人來說,該計畫平均應將上訴程序縮短約8個月。惟申請該計畫所需費用為400美元,且被批准的申請案會被限制在每季125件,會計年度最多500件,預計施行一年。   美國商務部負責智慧財產權事務副部長兼USPTO局長Andrei Iancu表示:「這是USPTO史上首次,申請人將能夠加快專利審查和單方上訴的速度,從而能較典型申請案約一半的時間內,就其最重要的發明做出決定。」。PTAB首席法官Scott Boalick亦表示:「近年來,我們取得了長足的進步,將上訴待決時間從2015年的平均30個月減少到目前的平均14個月。很高興PTAB現在能夠為申請人提供更快的途徑,從而使發明人和企業能夠更快地將其專利發明商業化。」   值得一提的是,我國智慧財產局亦有發明專利加速審查(Accelerated Examination Program, AEP)及商標加速審查機制。而AEP更早於民國98年1月1日起試辦實施,依據申請事由之不同,智財局將在申請人齊備相關文件後,於6個月內或9個月內發出審查結果通知。

TOP