日本總理公布「推展氫(水素)燃料基本方針」並加速落實再生能源計畫

  日本首相安倍晉三於2017年4月11日出席「第一次再生能源及氫(水素)燃料內閣會議」,在會議中進行加速引進再生能源及落實氫燃料社會等議題探討,並公布「推展氫(水素)燃料基本方針」,以達成2020年具有4萬台電動汽車之目標,並推展相關氫燃料之相關規範及準備,謹對於相關重點政策綜述如下:

一、為擴大再生能源之使用,5年內中央及各級政府共同展望12項計畫:

  1. 風能、地熱環境影響評估迅速化,並支援該地區之行政推廣。
  2. 透過地熱等開發,促進鄉鎮觀光發展。
  3. 擴大中小型水利之開發,統一提供及利用全國之資訊等。
  4. 林業及廢棄物處理、下水道政策之共同合作,促進生質能源發電。
  5. 促進海上風力發電,並檢討相關制度及環境規範。
  6. 為確保長期安定的太陽能發電,審視法規及相關制度。
  7. 引進低成本及遠距離控制之蓄電池。
  8. 以分散型能源系統,促進再生能源之利用。
  9. 相關行政程序之迅速化,以一站式窗口提供服務。
  10. 1與當地及環境共榮共存。
  11. 1低成本化及先端技術之研究開發。
  12. 可再生能源技術之海外支援。

二、邁向氫燃料社會之無碳排放目標:

  首先,擴大電動車燃料電池、家用燃料電池等相通之氫燃料之利用,中長期於2020年以氫發電及大規模國內外氫原料之供應鏈,最終希望建立無碳排放之氫燃料電力供應系統目標。

  在有擴大引進再生能源,並兼顧國民負擔之目標下,日本於2016年5月修正電氣事業再生能源電氣(FIT法)相關特別措施,且於2017年4月開始引進相關新的事業計畫及措施。

相關連結
你可能會想參加
※ 日本總理公布「推展氫(水素)燃料基本方針」並加速落實再生能源計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7782&no=64&tp=1 (最後瀏覽日:2026/01/05)
引註此篇文章
你可能還會想看
英國資訊委員辦公室(ICO)針對COVID-19接觸史追蹤應用程式框架,發布意見報告

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2020年4月17日,依據英國資料保護法(Data Protection Act 2018)第115條第3項第b款之授權,針對2020年4月10日Apple和Google因應COVID-19疫情發表之「接觸史追蹤應用程式框架」(Contacting Tracing Framework, CTF),發布意見報告。報告認為,由於CTF具備以下三大特性:(1)不會在裝置間交換個人資料,如帳戶資訊或使用者名稱;(2)配對過程僅在裝置本身進行,並不會有如應用程式伺服器之第三方介入;(3)不需要地理位置資訊就能順利運作,因此符合英國資料保護法第57條有關「透過設計並作為預設以保護個人資料」(Data protection by design and default)之規定。   縱然CTF符合英國資料保護法之規定,英國資訊委員辦公室仍於報告中指出:「未來軟體開發商若於接觸史追蹤應用程式中使用CTF技術,該應用程式於處理使用者之個人資料時,仍應隨時符合英國資料保護法關於透過設計並作為預設以保護個人資料之規定。」COVID-19疫情席捲全球,如何於「掌握感染者接觸史以預防疫情擴散」與「保障個人資料及隱私」間取得平衡,實為各國政府需考量之重要議題。我國人工智慧實驗室於2020年4月開發之「社交距離App」,便是使用類似Apple和Google之CTF技術。此份英國資訊委員辦公室意見報告,等於針對社交距離App是否侵害隱私權益,提供相當解答與指引。

何謂「國家科學技術發展計畫」?

  「國家科學技術發展計畫」為政府考量國家發展方向、社會需求情形以及區域均衡發展,而擬定之國家科學技術政策與推動科學技術研究發展之依據。依照《科學技術基本法》第10條之規定,國家科學技術發展計畫之訂定,應參酌中央研究院、科學技術研究部門、產業部門及相關社會團體之意見,並經全國科學技術會議討論後,由行政院核定。   全國科學技術會議每四年召開一次,最近一次會議為2013年的「第九次全國科技會議」,該次會議通過了民國102-105年的「國家科學技術發展計畫」,針對我國科技發展提出7項目標、27項策略及58項重要措施。7項目標包括:提升臺灣的學研地位、做好臺灣的智財布局、推動臺灣永續發展、銜接上游學研與下游產業、推動由上而下的科技計畫、提升臺灣科技產業創新動能、解決臺灣的科技人才危機等。

美國和歐盟合作推動統一優良臨床試驗規範

  美國聯邦食品藥物管理局(U.S. Food and Drug Administration)和歐洲醫藥局(European Medicines Agency)在2009年7月31日共同公佈了一項名為優良臨床試驗行動(Good Clinical Practices Initiative)的合作計畫,期能藉由該計畫,使得不論是在美國或歐盟,所有臨床試驗之執行,都有遵守相同且適當的規範。   在醫藥品上市申請的實務中,因為大部份的醫藥品都會企圖向廣大的歐美市場扣關,同樣的臨床試驗通常也會分別提交到兩地的醫藥品上市許可申請程序中。故若兩地主管機關可以合作訂出統一的優良臨床試驗規範,則可避免因重複審查所造成的資源浪費,申請者也可以因為統一的規範而加速其在兩地審查的程序,且在跨國資訊交流整合下,也可為臨床試驗研究的參與者提供更好的安全基礎。   此次美國聯邦食品藥物管理局,和歐洲醫藥局合作之優良臨床試驗行動的幾個主要目標如下: 一、定期交換有關優良臨床試驗之實務操作資訊:交換的資訊包括(1)彼此的優良臨床試驗(Good Clinical Practices, GCP)查核計畫,以了解有那些臨床試驗或地點是對方會去查核的,就不需要重覆查核;(2)彼此受理的上市申請案件中,有關GCP的如科學上的建議或上市申請的結果等;以及(3)彼此執行GCP查核之結果。二、共同執行優良臨床試驗審查:藉此了解對方之GCP查核程序,並進而信賴彼此之程序,也藉由共同執行時之交流,提昇彼此查核之技巧,及精進查核之程序。 三、合作增進優良臨床試驗規範:藉由對彼此GCP相關法規、指導原則、和政策等的交流及了解,找出現有規範中可予以改進之處,以增進臨床試驗研究的品質。   自2009年9月1日起,此項合作行動將首先開始一個為期18個月的先期行動,在此先期行動結束後,兩主管機關將會共同發布一份包含其整體行動計畫,及雙方就各自既有法規或程序應予以調整部分。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

TOP