日本首相頒布「2017智慧財產推動計畫」,揭示國家推動三大基礎政策面向

  日本首相安倍晉三於2017年5月16日在官邸舉行智慧財產戰略本部(知的財産戦略本部)會議,並正式頒布「2017智慧財產推動計畫(知的財産推進計画2017)」。為因應大數據(ビッグデータ)、人工智慧(人工知能)等相關先進科技議題,透過調整產官學資源,培育地方中小企業智慧財產基礎認知,保護高附加價值農產品品種,振興觀光及影視等文化產業,提昇國家綜合競爭力,構築第4次產業革命(society5.0)之基礎。該會議中,所發表「2017智慧財產推動計畫」之三大基礎政策面向分別為:

一、建構第4次產業革命之智慧財產系統

(一) 充分利用、活用資訊及人工智慧以強化產業競爭力:

  1. 制訂資訊利用契約指引(ガイドライン)。
  2. 修正不正競爭防止法(資料不當取得禁止等)。
  3. 著作權法之修正(對於權利柔軟性限制之規定)。
  4. AI學習模型(AI学習済モデル)專利。

(二) 智慧財產系統基礎之準備:

  1. 強化證據蒐集程序。
  2. 創設ADR制度(Alternative Dispute Resolution、日文:標準必須特許裁定)。

(三) 推動引領全球之智慧財產制度及相關標準化:

  1. 推動全面化的智慧財產管理制度(賦予智慧財產權之資料及標準等)。
  2. 活用國立研究開發法人之標準及其人才之培育。

二、活用智慧財產之潛力,推動區域活絡與發展

(一)積極活用強化農林漁業、食品業等智慧財產:

  1. 充實地理標示(GI)或植物品種,於國內外之保護及輔導體系。
  2. 制訂國家農林漁業優勢的標準(JAS)。
  3. 推動活用資訊之智慧農業。

(二) 活用地方中小企業智慧財產,並推廣產學及產業間之互助:

  1. 啟發中小企業智慧財產意識,支援智慧財產海外之推廣。
  2. 產學攜手之橋接,並支援事業化。

(三) 每一位國民都是智慧財產人才,推動智財教育:

  1. 充實智慧財產教育之新指導要領。
  2. 智慧財產教育振興聯盟課程與教材之開發。
  3. 建立地方性聯盟。

三、2020年大放異彩之日本

(一)海外推廣和產業基地之加強:

  1. 「酷JAPON官民共同營造平台」、「地方版酷JAP」之基礎建設及相互合作。
  2. 人才之育成、教育機構的合作。

(二)振興電影產業:

  1. 強化中小企業公司製作之支援及資金調動多樣化,及其海外之發展。
  2. 成s立公私部門改善攝影環境之聯絡會議。

(三)構築資料庫:設立跨部門之窗口,在產官學共同協助下活用研究成果、及商業化。

  這個推動計畫乃是與「總合科學技術革新會議(総合科学技術・イノベーション会議)」及「IT總合戰略總部(IT総合戦略本部)」等共同合作,並結合「資訊利用促進基本計畫(官民データ活用推進基本計画)」(以「科學技術基本計畫」、「科技創新綜合戰略(科学技術イノベーション総合戦略)」、「資訊利用促進基本法(2016第103號法律)」等為基礎所發展的新計畫),在智慧財產戰略總部的主導下進行推動,積極穩健的落實智慧財產價值之保護、智財潛力活用及地方革新推動、日本文化之集結及向世界傳達日本的新文化價值等三大目標,以達到國家的發展戰略中,智慧財產戰略政策之最大使命。

相關連結
你可能會想參加
※ 日本首相頒布「2017智慧財產推動計畫」,揭示國家推動三大基礎政策面向, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7787&no=55&tp=1 (最後瀏覽日:2026/01/10)
引註此篇文章
你可能還會想看
德國慕尼黑地方法院日前認定特斯拉關於「Autopilot」等銷售(廣告)標示將誤導消費者

  自特斯拉(Tesla)推行Autopilot(此於特斯拉之繁體中文官網譯作自動輔助駕駛)以降,其原先宣稱可免手動(Hands free),但經美國國家公路交通安全管理局(National Highway Traffic Safety Administration,NHTSA)指摘特斯拉前述宣稱可能使駕駛人注意力渙散而發生事故,似乎影響近年來特斯拉對於其自動輔助駕駛系統之論調,而改要求駕駛人即便開啟該系統仍須將手放置於方向盤上。除了前揭特斯拉於車輛銷售(廣告)資訊所生的爭議外,日前2020年7月間德國慕尼黑第一地方法院(Landgericht München I)之合議庭的判決,認定特斯拉於其車輛(Model 3)之銷售(廣告)標示資訊的整體,以及原告競爭中心(Wettbewerbszentrale)所分別主張之內容,均屬不正當競爭防制法(Gesetz gegen den unlauteren Wettbewerb,UWG)第5條第1項第2句第1款之誤導性商業行為(Irreführende geschäftliche Handlungen,或譯作引人錯誤之交易行為)。   本件之爭點核心在於特斯拉現行車輛既有配備之Autopilot系統,以及消費者可自行選購之Volles Potenzial für autonomes Fahren(德文直譯:具備完全自動駕駛潛力,而特斯拉之繁體中文官網譯作全自動輔助駕駛)系統等用詞,因其等涉及車輛功能與設備之決定性概念和資訊,則與現行「車輛駕駛輔助系統」(Fahrassistenzsystem)存有落差,進而導致消費者理解與實際情況不一致之情形。   法院認定理由在於不論特斯拉之Autopilot或Volles Potenzial für autonomes Fahren等系統,均無法達到毋須人為介入行駛的情境,即便其於官網上有另行標註目前該等系統功能有限,仍須駕駛人主動監控所有行駛環境等,但因該等內容說明不夠透明與清晰,而仍無法排除其等資訊具有誤導性,故特斯拉使用Autopilot等詞以及其他暗示車輛技術上能完全自主(vollkommen autonom)等用語,將引起消費者錯誤認知其可在德國的道路上運行完全自主之自動駕駛系統(註:此部分似係指SAE標準等級5之自動駕駛系統,然德國道路交通法目前僅開放運行等級4以下之自駕系統)。不過該判決結果仍可上訴。

在美國競業禁止修法趨勢下,雇主可採取的配套措施——–不可避免揭露原則?

美國聯邦貿易委員會(Federal Trade Commission, FTC)於2023年1月提出一項提案,將使所有競業禁止條款無效,惟提案尚未確定。儘管FTC同意該提案將影響對雇主的保護,但也指出營業秘密法已為雇主提供了保護其營業秘密的配套,其中「不可避免揭露原則」(the “inevitable disclosure” doctrine)或許將成為競業禁止協議之替代方案。 不可避免揭露原則是指當公司認為前僱員於新公司任職,將不可避免地使用前公司之營業秘密時,可向法院聲請禁止前僱員至新公司任職。法院通常會考慮下列三個因素,以決定是否基於不當使用營業秘密之「威脅」而授予禁制令救濟,包括: 1.前後雇主是否為提供相同或非常相似服務的直接競爭對手; 2.前僱員的新職位是否與原職位雷同,以至於無法合理地期待該僱員在不利用其前雇主之營業秘密的情況下,能履行其新的工作職責; 3.所涉及的營業秘密對於前後雇主是否都具有相當之價值。 雖然部份州法院指出根據其州法,得適用不可避免揭露原則,但各界對於雇主能否向聯邦法院根據《保護營業秘密法》(Defend Trade Secrets Act, DTSA)援引該原則仍未達成共識。儘管如此,部份聯邦法院強調雇主須明確說明前僱員為何將不可避免地使用或揭露其營業秘密,僅證明前僱員在工作期間獲得機密資訊,並隨後於競爭公司擔任類似職位,不足以證明前僱員將不可避免地使用前公司之營業秘密。 綜上所述,不可避免揭露原則可以防止前僱員不當使用其營業秘密的威脅,但由於聯邦法院對於能否援引該原則的標準仍不明確,僅指出不可避免揭露原則將使雇主面臨較高的舉證要求,故其是否能成為競業禁止協議的替代方案,仍有待觀察。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

歐盟發佈Amazon違反反托拉斯法之初步調查結果,並將對其電商業務展開第二輪調查

  歐盟執委會於2020年11月10日對Amazon發佈反托拉斯調查之初步調查結果,針對其2019年7月之首次調查提出調查意見書(Statement of Objections, SO),認定Amazon使用大量非公開賣家資料,減少自身作為零售商之競爭風險,相關可能違反歐盟運作條約(TFEU)第102條禁止濫用市場主導地位。   歐盟於2019年7月17日對Amazon展開首次反托拉斯調查。Amazon作為平台,具有雙重身分,第一個身分是作為零售商,在網站上銷售商品;第二個身分是作為平台商,提供第三方賣家銷售商品的市場。因此歐盟認為Amazon在平台上收集價格或活動統計資料,將調查Amazon和第三方賣家的標準協議中,是否允許Amazon分析賣家的買賣統計資料?以及第三方賣家使用「黃金購物車」(Buy Box)的機制為何?   歐盟執委會調查說明,Amazon作為平台,可以大量使用第三方賣家資料,例如訂購及發貨數量、賣家收入、報價次數、物流資料、賣家表現評價、消費者索賠資訊等。然而相關統計數字及資料進入Amazon業務自動化系統,使Amazon零售業務可以大量使用上述非公開資料,以調整自身產品零售報價和業務決策,降低自身作為零售商的市場競爭風險。   此外,歐盟執委會認為,Amazon的「黃金購物車」和「Prime label」機制,使平台上的第三方賣家必須選擇使用Amazon物流、倉儲和售後服務(Fulfillment by Amazon, FBA),才能取得平台的「黃金購物車」和「Prime label」標章,才可能增加產品搜尋曝光度、交易成功率,進而提高銷售量(據統計,Amazon平台超過八成之交易是透過黃金購物車完成)。因此導致消費者大多選擇購買曝光度高、也就是使用Amazon物流的賣家,形成賣家之間的不公平競爭。歐盟執委會後續將啟動第二輪調查,且未言明結束調查時間。

美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。   該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。   此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

TOP