日本特許廳(Japan Patent Office,JPO)從去(2016)年12月開始,與NTT Data公司合作,使用人工智慧(Artificial Intelligence,簡稱AI)來系統化的回答有關專利問題,且依成果顯示,與原先運用人力回復的成果相當;JPO因此決定於今(2017)年夏天開始,將AI技術分階段應用於專利及商標的審查案,並期望能於下一會計年度(2018年4月至2019年3月),在審查業務中全面運用AI技術。
JPO指出,透過AI技術能有助於將專利及商標審查程序中繁冗的檢索程序簡化,以專利審查為例,可搜尋大量文件與檔案,進行專利先前技術檢索,以確保相關技術尚未獲得專利保護,同時也可以協助專利分類;此外,商標審查亦可利用AI之圖像辨識技術比對圖片及標誌,找出潛在的類似商標。
AI技術被證實能提升審查效率,並減輕審查人員檢索與比對部份的工作負擔,有助於抑制人工審查的長時間工作型態,根據2017年日本特許廳現況報告(特許庁ステータスレポート2017),於導入AI技術後,原本從申請到審查完成平均約2年左右之審查時間,期望可在2023年將審查期間降到14個月,讓日本成為智慧財產系統審查最快且品質最好的國家之一。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
全球創新指數(Global Innovation Index,簡稱GII)為世界智慧財產權組織(WIPO)與歐洲工商管理學院(INSEAD)等單位,共同衡量全球經濟創新績效之參考指標,於今年(2020)9月2日所發佈的全球創新指數顯示,COVID-19嚴重的阻礙全球創新的發展,但卻也對於特定領域(如醫療衛生)帶來新的創新契機。 今年與2009年(全球經濟危機時)相比,世界金融體系運作仍保持平穩,但用於資助創新型企業的資金,由於全球投資者對於疫情影響新創企業營利表現擔憂,資金的投入也連帶受到影響。而在創新融資方面,鎖定新創早期階段投資的創投公司為確保日後競爭力,轉向對當今熱門標的(如生命科學等)等進行投資,若屬於研發密集型新創企業(研發時間較長)及非投資熱點(區域)的企業,投資方面則所受疫情衝擊較大。 觀察全球主要國家,雖然皆制訂相關補助計劃用以緩解因疫情所帶來之衝擊,例如中短期欲透過貸款擔保爲企業提供支持。然而,這些補助措施並非直接爲創新和新創企業提供資金。儘管如此,專家對於全球科學和創新受COVID-19的影響也非全然悲觀,部分源自於全球對於資本回報的期待,也預估未來風險投資及創新也將轉向醫療衛生、遠距教學、大數據、電子商務、機器人等領域。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
歐盟通過《歐盟綠色債券規則》,建立綠色債券監管框架歐盟於2023年10月11日發布《歐洲綠色債券監管及環境永續債券市場與永續連結債券自願性揭露規則》(Regulation on European Green Bonds and optional disclosures for bonds marketed as environmentally sustainable and for sustainability-linked bonds,下稱《歐洲綠色債券規則》),預計於2023年12月20日生效,針對在歐盟境內發行之綠色債券建立一套監管框架,課予欲使用「歐洲綠色債券」(European Green Bond)或「EuGB」等名稱發行環境永續債券的發行人一定義務,促進綠色債券的一致性和可比性,以保障投資人。綠色債券是發展綠色技術、能源效率和提升資源運用以及其他永續相關基礎設施投融資的主要工具之一,本規則之通過也被視為落實歐盟永續成長融資策略以及向碳中和、循環經濟轉型的一大進展。 《歐洲綠色債券規則》規範重點如下: 1.資金用途限制:《綠色債券規則》所有透過歐盟綠色債券募得的資金,原則上均必須投資於符合《歐盟永續分類標準》(EU Taxonomy)技術篩選標準的永續經濟活動,只有在所欲投資的經濟活動類別尚未被納入該標準時得為例外,且以總額之15%為限; 2.資訊揭露:綠色債券之發行人有義務揭露該債券之概況介紹(Factsheet)、資本支出計畫、資金使用分配報告、衝擊報告,並於債券公開說明書敘明資金用途,並得選擇進一步說明該債券之資金如何與自身企業整體環境永續目標相結合; 3.外部審查:前述資訊均須由已向歐洲證券與市場管理局(European Securities and Markets Authority)註冊之外部機構進行審查,以確保其準確性及可靠性。
美國證券交易委員會針對上市公司提出網路安全風險管理、治理及網路安全風險事件揭露規則美國證券交易委員會(United States Securities and Exchange Commission, SEC)於2022年3月9日提出關於上市公司網路安全風險管理、治理及相關事件揭露規則,希望加強上市公司的網路安全風險管理以及網路安全事件之揭露監管,其提案核心內容有二,第一係要求國內上市公司於確定發生重大網路安全事件後四個工作日內,揭露有關資訊,且揭露內容必須包含以下五大項,(1)事件何時發現、目前是否持續中、(2)事件性質與其範圍簡要說明、(3)是否有任何資料被洩漏、竄改或被不當使用、(4)該事件對於公司之營運影響、(5)公司是否已著手進行補救及處理。 該提案的第二個核心內容係定期報告公司的網路安全風險管理及治理資訊,例如公司是否具有網路安全風險評估計畫,其內容為何、公司是否有政策及程序監督第三方服務提供商之網路安全風險、當公司發生網路安全事件時,是否具備應變程序及網路攻擊復原計畫、網路安全相關風險對於營運結果及財務狀況將可能產生何種影響等等。 該提案的公眾諮詢期間為提案發布後60天,鑒於網路安全風險增加,美國證券交易委員會期望藉由此提案,更明確的告知投資者上市公司的網路安全風險管理及治理相關資訊、並且可以即時通知投資者重大網路安全事件,給予上市公司投資者及其他資本市場參與者更周延之保障。