日本內閣官房下設之未來投資會議於2017年6月9日,以構築「Society5.0」為目標,提出《未來投資戰略2017》,宣佈未來施政將以「延長健康壽命」、「實現移動革命」、「供應鍊的次世代化」、「街道活性化」以及「Fintech」等5大領域為中心。
在實現移動革命部份,《未來投資戰略2017》計畫藉由無人自動駕駛移動服務、小型無人機和自動駕駛船隻等,提高物流效率與實現高度化移動服務,以減少交通事故和解決人力不足等問題。
與此同時,日本亦將自2018年起展開卡車列隊行駛公路實驗,以期在2022年前達成卡車列隊行駛商業化之目標;此外,亦將於2018年起在山間地帶展開以小型無人機運輸貨物之實驗。除上述自動駕駛技術之實驗外,日本亦將朝向擴大駕駛資料收集和利用,主導制定資料傳輸規格等方向努力,並計畫於2017年底擬定高度自動駕駛系統商業化相關法規及制度之整備大綱。
本文為「經濟部產業技術司科技專案成果」
物聯網是指明確可辨識的實體物件與虛擬的類網路代理架構的聯結。它是由馬克.維瑟於1991年所提出,指的是(個人)電腦作為機具設備的形式未來將逐漸消失,而替換為"智慧元件"的形式。當前人們關注的對象已經不再是物體本身,而是人們的各種活動中的物物相連。其在不知不覺中已經提供人們各式各樣的輔助,例如小型化的嵌入式電腦毋需操作,就可以提供各式各樣的輔助。這種微型的電腦,即所謂的穿戴式裝置,可以最大程度地結合不同感應器直接在服裝上出現。 數位化在多個層面正在改變我們的生活和工作方式。現代資訊技術幾乎使任何對象無論是家庭日常物品或工廠內的機器,都能用最小的空間達到強大的計算能力(所謂的“嵌入式系統”)。烤麵包機,洗衣機和機床都可由軟體控制,並可以透過網際網路相互、或與外部世界聯結。 物聯網在居家領域具體將以智慧住宅(Smart Home)形式呈現。運用智慧聯網技術將能獲得更多的舒適性和安全性、節約能源或提供適合各年領階層的生活與和起居。現有的解決方案可以透過智慧型手機遠端控制進行空調、電爐和燈具的使用。未來,洗衣機甚至可以自動尋找最優惠的電價決定洗衣服的最佳時間。 智慧家居若要成功,需得到消費者的接受。故物聯網解決方案必須具有可信賴性(資料保護、資訊安全)、能夠持久並可靠地運作,並能夠在未來繼續穩定地投入智慧家庭的行列。對於製造商和供應商而言,應該以在新的立場和視角來開拓一個新的市場。
日本發布成為可信賴夥伴的資料治理手冊,呼籲企業應建立並實施貫穿資料生命週期的資料治理機制日本獨立行政法人情報處理推進機構於2025年1月28日發布《成為可信賴夥伴的資料治理手冊(下稱《手冊》)》,旨在呼籲企業建立與實施「貫穿資料生命週期的資料治理機制」,藉此將資料價值最大化,並將資料風險最小化。 《手冊》指出,資料驅動著社會發展,資料治理的重要性亦隨之提升。資料治理係指企業或組織透過機制、規則與制度等多種層面的策略性手段管理其重要資料資產,並透過制定相應的政策與規則,確保資料的品質與安全性。同時,考量資料具備易於複製、竄改且流通難以控制的特性,建立完善的資料治理機制亦有助於在共享資料的過程中維持其品質及安全性。推動資料治理的基礎,則仰賴適當且有效的資料管理機制,亦即確保在蒐集、處理、儲存與使用等資料生命週期各階段皆能落實資料管理機制。然而,資料管理本身要能發揮效益,仍須依賴組織具備足夠的資料成熟度,即具備正確處理與應用資料的整體能力,方能系統性的落實管理與治理工作。 根據《手冊》內容,透過資料治理,企業或組織將能確保資料品質、透明度及安全性,並基於可信任的資料進行決策,進而有效提升決策精準度,實現風險管理與法規遵循,進一步強化自身在資料經濟中的「價值」、「信任」與「公正性」。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料治理機制,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為制度設計與實務推動之參考,以強化資料治理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國能源關鍵基礎設施議題觀察 數位模擬分身(Digital Twin)數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。 於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。