中國大陸國家知識產權局於2017年6月27日公布「專利優先審查管理辦法」,將自2017年8月1日起施行,對符合規定之發明、實用新型、外觀設計專利申請提供快速審查管道。同時廢止2012年之「發明專利優先審查管理辦法」,使優先審查制度之適用不再以發明專利為限。
按「專利優先審查管理辦法」第3條所揭,以下6種專利申請得請求優先審查:
作為中國大陸十三五時期所提出之智財法規,或可從中得知未來中國大陸重點發展之技術與智財領域。
台灣專利優先審查制度明訂於專利法第40條、第101條,惟智慧局得優先審查者,僅限於已公開之發明申請案有非專利申請人為商業上實施時或舉發案涉及侵權訴訟案件之審理者。適用對象、範圍與中國大陸優先審查制度有別,我國廠商、研發人員於大陸申請專利時,應予注意。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
美國FDA更新軟體預驗證計畫,以明確化數位健康科技的軟體器材審查流程美國食品及藥物管理局(the U.S. Food and Drug Administration)於2019年1月更新「軟體預驗證計畫(Software Precertification Program)」及公布該計畫「2019測試方案(2019 Test Plan)」與「運作模式初版(A Working Model v1.0)」,使審查流程更加明確及具有彈性,並促進技術創新發展。 在更新計畫中,FDA聚焦於審查架構的說明,包含考量納入醫療器材新審查途徑(De Novo pathway)及優良評估流程(Excellence Appraisal process)的審查內涵。在優良評估流程中,相關研發人員須先行提供必要資訊,以供主管機關驗證該軟體器材之確效(validation)及是否已符合現行優良製造規範(current good manufacturing practices)與品質系統規範(Quality System Regulation, QSR)的要求。而由於以上標準已在此程序中先行驗證,主管機關得簡化上市前審查的相關查證程序,並加速查驗流程。 在測試方案中,則說明FDA將同時對同一軟體器材進行軟體預驗證審查及傳統審查,並比較兩種途徑的結果,以確保軟體預驗證審查途徑中的每一個程序都可以有效評估產品上市前所應符合的必要標準。最後,FDA綜合軟體預驗證計畫及測試方案,提出「運作模式初版」,以協助相關人員了解現行的規範架構與處理程序,並期待藉此促進技術開發者及主管機關間的溝通。FDA並於運作模式文件中提到,將在2019年3月8日前持續接受相關人員的建議,而未來將參酌建議調整計畫內容。
知名歌手Bruce Springsteen拒絕與美國作曲家、作詞家、出版商協會共同要求康諾利酒吧和餐館支付著作權授權費用美國作曲家、作詞家、出版商協會American Society of Composers, Authors and Publishers (以下簡稱協會)與知名搖滾歌手Bruce Springsteen(以下簡稱Springsteen),和流行歌曲作者Clinton Ballard, Jr.對於紐約州的康諾利酒吧和餐館提出訴訟,原因在於酒吧和餐館沒有支付授權年費就允許樂團演奏Springsteen的歌曲。 當協會的代表發表此一聲明時,Springsteen實際上並不知道此一訴訟。Springsteen的代表指出:Springsteen事先並未被詢問是否要作為此案的原告,該協會是自作主張的將Springsteen列為此案的原告,而且即便協會事先詢問,Springsteen也不會同意作為此案的原告,也就是說不會提起此訴訟。 紐約每日新聞指出,因為協會並未獲得Springsteen的同意,Springsteen的名字應該會被移除。 協會資深副總裁Vincent Candilora(以下簡稱Candilora)表示,康諾利酒吧與餐館目前尚未發表任何聲明,而康諾利酒吧與餐館允許樂團於去年夏天演奏Springsteen的歌,但卻沒有支付授權年費給協會的行為可能會面臨三萬美元的罰金。 Candilora同時表示,為什麼這些有支付授權金的酒吧或餐館在有同樣法律約束的地區,要處於一個不利的競爭條件。提出此訴訟是給予有付授權費用的紐約酒吧一個公平的環境。
日本數位廳發布資料治理指引,協助企業運用資料提升企業價值日本數位廳發布資料治理指引,協助企業運用資料提升企業價值 資訊工業策進會科技法律研究所 2025年09月05日 隨著AI迅速普及已成為不可逆轉的趨勢,經濟與社會產生重大變革,手機、家電及各種智慧裝置大量蒐集資料,似已成為維持經濟與社會運作不可或缺的重要要素,在國際上已出現如歐洲共同資料空間(Common European Data Space)等先進的資料運用案例,日本亦開始推動企業跨領域資料運用,藉此提升企業生產力與附加價值[1]。 壹、事件摘要 日本數位廳(デジタル庁)於2025年6月20日發布資料治理指引(データガバナンス・ガイドライン),以企業經營者為適用對象,歸納總結資料治理之必要性、應採取之做法,與實踐治理過程中應留意之要點,協助企業推動數位轉型,發揮資料最大效用,持續提升企業價值,並進一步實現超智慧社會[2](Society 5.0)願景[3]。 貳、指引重點 本指引歸納總結實踐資料治理的四大支柱,概述如下: 一、設計符合跨境傳輸資料實際狀況之業務流程 資料共享與協作的主要目的是推動數位轉型與提升企業價值,因此,運用跨境資料時,需要調查當地國家或地區法規,釐清國際規範,並預測後續法規動向,克服法規限制。為評估運用跨境資料之潛在風險,則須透過如顧問公司、諮詢公司等第三方外部機構進行調查與監控,採取適當風險因應措施。為明確責任,須事先與資料共享之利害關係人,將瑕疵擔保責任透過契約與相關規定明文化。在修改業務流程時,亦須與相關組織及利害關係人共享資訊,確保資料在生命週期中的可追溯性[4]。 二、確保資料安全(データセキュリティ) 以資料生命週期為基礎,掌握運用跨境資料可能產生之風險,並依照相關組織與利害關係人值得信賴之程度,進行風險分析制定因應策略。針對業務流程中取得的資料,應限制在資料產生者允許之範圍內,始得進行運用,以維護資料使用正當性。此外,亦須特別留意資料完整性,確保資料來源值得信賴且未受到偽冒,以及資料內容未遭到竄改或洩漏[5]。 三、提升資料成熟度(データマチュリティ) 制定並推動可提升資料成熟度[6]之方針,持續改善流程,將資料價值最大化,並將風險最小化,提升企業綜合能力。資料長(Chief Data Officer, CDO)須發揮領導能力,建立能迅速因應變化的體制,明確各組織相關負責人與其角色,並推動具備資料相關技能之人才培育招聘計畫。資料長亦須分析導入如AI等先進技術之費用效益,向經營者提出建議。除了公司自身狀況會影響資料成熟度外,亦可能受到資料共享與協作之利害關係人的資料成熟度水準影響。因此,公司亦須將採取之具體措施與相關資訊分享予利害關係人,並向社會公開公司目前資料成熟度水準,持續強化企業與利害關係人及社會之間的相互信賴程度[7]。 四、制定並定期檢討AI等先進技術運用行動方針 為使AI等先進技術發揮最大力量,並降低對社會與個人可能造成的負面影響,企業應參考經濟產業省(経済産業省)於2025年3月28日發布之AI業者指引第1.1版[8](AI事業者ガイドライン第1.1版),並考量個人資料保護、機敏資料保護、透明度、可問責等重要因素,針對涉及資料運用的各種實務運用場景,由CDO主導制定運用AI等先進技術運用行動方針(AIなどの先端技術の利活用に関する行動指針),並適時檢討持續改善內容[9]。 參、事件評析 當資料留存在企業內部未被有效運用時,不僅會成為企業和產業發展之阻礙,也將導致社會整體效率低落。本指引歸納總結實踐資料治理的四大支柱。為達成協助企業運用資料推動數位轉型,提升企業價值之目標,除了需要企業管理階層主導,亦須獲得公司內部與利害關係人之理解與支持。企業應積極與其他企業、組織和機構進行資料共享與協作,積極參與資料治理,提高產品與服務價值及企業聲譽,進而促進社會永續性發展[10]。 隨著國際上已出現先進資料運用案例,我國亦須關注資料運用國際趨勢推動創新發展,日本推動企業跨領域運用資料之做法,亦可為我國未來實踐資料治理提供借鏡。 [1]〈データガバナンス・ガイドライン〉,デジタル庁,頁2-3,https://www.digital.go.jp/assets/contents/node/information/field_ref_resources/71bf19c2-f804-488e-ab32-e7a044dcac58/b1757d6f/20250620_news_data-governance-guideline_01.pdf (最後瀏覽日:2025/09/02)。 [2]〈Society 5.0〉,内閣府,https://www8.cao.go.jp/cstp/society5_0/index.html (最後瀏覽日:2025/09/02)。 [3]前揭註1。 [4]同前註,頁13。 [5]同前註,頁15-16。 [6]資料成熟度係指企業根據其戰略或經營需求,有效運用資料的能力。可參閱同前註,頁5。 [7]同前註,頁18-19。 [8]〈AI事業者ガイドライン〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/ai_shakai_jisso/20240419_report.html (最後瀏覽日:2025/09/02)。 [9]前揭註1,頁20-23。 [10]同前註,頁24-25。