日本內閣官房日本經濟再生總合事務局(内閣官房日本経済再生総合事務局)在2017年6月9日第10次「未來投資會議」中提出未來投資戰略2017報告(未来投資戦略2017~Society 5.0 の実現に向けた改革~),在成長的戰略成果(5)日本第四次產業革命及新經濟的展開中,分別對於機器人實用、物聯網(IOT)、大數據(BIG DATA)、人工智慧(AI)等提出成果及未來計畫。
機器人加速實用化:首先,機器人廣泛利用在商業設施、機場等日常生活空間,於2016年9月羽田機場設置機器人實驗室「Haneda Robotics Lab」,利用機器人改善服務並補充勞動力。有關打掃清潔、協助移動、查詢服務等17種機器人,將進行實證實驗。而路面協助行走型機器人「RT.1」已經完成,於2015年生活協助型機器人之安全性得到國際認證,其後發展之「RT.2」將使用於長期照顧層面。其次,開發農業使用之自動駕駛拖車,並提供工作實際狀況和土壤狀況之電子管理服務。今年6月開始商業化之自動駕駛顯示器,可以監控自動駕駛耕作機器進行自動耕作等。在物流管理方面,於2018年將於山間部等地區進行無人機的包裹遞送,2020年將在都會區全面無人包裹遞送。預計將與日立等相關公司,進行物流管理系統之開發及活用福島機器人測試場域。
本文為「經濟部產業技術司科技專案成果」
印度電子資訊產業技術部(MeitY)2022年11月在網站上公布了個人資料資訊保護法草案(Digital Personal Data Protection Bill,以下簡稱該法案),並於2023年7月提交議會審查。目前印度民法不承認未成年人(未滿18歲者)具有自主簽訂契約的能力。因此,取得的兒童同意不具有法律效力,必須徵得父母或是監護人的同意才能合法蒐集兒童個人資料。 根據印度2022年個人資料資訊保護法案草案,任何未滿18歲的人都被歸類為「兒童」。該法案中同時限制專門向兒童發送的廣告,並且監管任何追蹤兒童行為的情況。目前國際隱私法(例如:歐盟通用資料保護條例 (GDPR)、加州消費者隱私法(CCPA)等)的兒童定義多在13至17歲之間。但考慮到兒童個人資訊的敏感性和潛在危害,印度政府採取了較保守嚴謹的路線。政府也已被授權制定有關處理兒童個人資訊的細則,特别是確保資料使用人不可使用可能對兒童造成傷害的個人資料。 根據社會發展狀況,兒童若每次在網路平台上進行活動時都需經過父母或是監護人同意不甚妥適,且根據前述說明,兒童界定年齡為18歲以下,若依照統一年齡範圍進行控管,實際執行上面臨窒礙難行之處。故修法者在對於該法案修改意見中,引用了其他國家隱私法中的不同年齡分類限制,以求降低年齡門檻限制,或是根據用戶的年齡制定差異化的授權要求。 另一個產生的爭議為,該如何驗證父母或是監護人的同意表示。法條中目前無明確規範何為「有效之同意表示」,現行各平台使用不同的方法獲得父母或是監護人的同意,目前有兩種方式,包括點選「同意」按鈕,或是在用戶條款中表示若使用服務等同於監護人同意。 關於兒童年齡之界定,是否將參考其他國家規範進行差異化設定,目前暫無明確定論(包括如何調整、年齡級距設定),根據資訊使用的普及,兒童年齡的界定可以預期的將會進行調整;關於如何有效驗證父母或是監護人的同意表示,目前在技術上大多服務商都偏好透過會員註冊時的同意按鈕或是用戶條款中列明若使用服務即代表同意這兩種方式認定,在這兩種方式之後,系統是否有設定驗證機制,以及需要何種驗證方式才可以認定父母或是監護人的同意表示是符合法律效力的,都需後續再進行研擬。
精品珠寶業者攻防戰-卡地亞控訴蒂芙尼竊取營業秘密今(2022)年2月28日卡地亞(Cartier)控訴精品珠寶領域的競爭對手蒂芙尼(Tiffany & Co.),聲稱其在卡地亞前員工的幫助下,竊取獨家商品的營業秘密。 歷峰北美公司(Richemont North America Inc.)旗下的卡地亞今年2月28日於美國紐約州法院起訴蒂芙尼和卡地亞前襄理(Junior Manager)梅根瑪莉諾(Megan Marino),控訴瑪莉諾於跳槽前下載卡地亞的高級珠寶業務機密資訊, 並於去年11月加入蒂芙尼後將資訊傳送給新同事。蒂芙尼發言人發出否認聲明,卡地亞的指控毫無根據。 根據訴訟聲明,蒂芙尼聘請瑪莉諾負責包括單價高達1000萬美元(約新台幣2.8億)的高級珠寶系列,蒂芙尼法律部門從卡地亞獲得通報後,於今年2月份解僱瑪莉諾,但卡地亞聲稱,蒂芙尼的高階主管已經獲得大量的卡地亞機密和營業秘密資訊。 這並非卡地亞第一次指控跳槽至蒂芙尼的前員工試圖竊取營業機密。2014年,卡地亞起訴一名前廣告主管,據稱其試圖讓她的前助理隨身攜帶機密資訊一同加入蒂芙尼,該訴訟於次年和解。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國商務部產業安全局擴大對中國半導體製造設備、軟體工具、高頻記憶體等項目之出口管制.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國商務部產業安全局(Bureau of Industry and Security,簡稱BIS)於2024年12月2日發布《外國生產的直接產品規則補充以及先進運算及半導體製造項目管制精進》(Foreign-Produced Direct Product Rule Additions, and Refinements to Controls for Advanced Computing and Semiconductor Manufacturing Items),並於同日(12月2日)生效,部分管制措施的法律遵循延後至2024年12月31日。BIS開放公眾可以就本次管制提出意見。 因中國的半導體戰略旨在進一步推進中國的軍事現代化、大規模殺傷性武器(WMD)的發展,美國政府認為中國的相關政策與措施,將可能侵害美國及其友盟之國家安全。因此,本次管制之目的旨在進一步削弱中國生產先進節點半導體的能力,包括下一個世代的先進武器系統,以及具有重要軍事應用的人工智慧與先進運算。 為達上述目的,本次管制修正具體擴大的管制項目概述如下: 1. 24種半導體製造設備,包括某些蝕刻(etch)、沉積(deposition)、微影(lithography)、離子注入(ion implantation)、退火(annealing)、計量(metrology)和檢驗(inspection)以及清潔(cleaning)工具。 2. 3種用於開發或生產半導體的軟體工具。 3. 管制源自美國的高頻寬記憶體,以及於美國境外生產且美國管制清單中所列之高頻寬記憶體。 4. 新增對電子電腦輔助設計(Electronic Computer Aided Design)與技術電腦輔助設計(Technology Computer Aided Design)軟體及技術的限制。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。