歐盟委員會(European Commission)原則上禁止將歐盟境內的個人資料傳輸至境外,只有經歐盟委員會認定其個人資料保護機制達到歐盟認可標準的國家或地區例外,例如:瑞士、加拿大、以色列等。而日本未能進入前揭國家之列的主要原因,係日本之個人資料保護法未將政府部門納入規範對象。但是基於經濟全球化的需求,日本與歐盟自2017年第一季開始加速進行雙邊合意協商。
日本個人資料保護委員會公布,於2017年5月修正施行的個人資料保護法,已符合歐盟資料保護規則中准許進行境外傳輸的標準。其中包括以獨立的個人資料保護機關來確保必要的保全機制能確實執行等五點(新設立個人資料保護委員會、個人資料定義的明確化、個人料去識別化、非法販賣個人資料之處罰、其他)。
歐盟對此表示,雙邊對於個人資料保護之標準的差異性已經漸漸縮小,利於日本與歐盟間個人資料國際傳輸的環境也已經逐漸形成。目前於歐盟境內設立子公司或是設立法人的日本企業,預期2018年即能自由就歐盟境內雇員或顧客的個人資料,進行日本與歐盟間的國際傳輸。
由於歐盟關於個人資料之保護,為歐洲聯盟基本權利憲章(Charter of Fundamental Rights of the European Union)所明定,企業若非法進行個人資料境外傳輸,會被處以高額罰金,金額約相當於該企業一年內全球營業額總額的4%或2000萬歐元,兩者取其高者為上限;股東甚至也可能面臨被提起訴訟的風險。日本此次修法,對日本在歐盟境內的企業經營將帶來莫大的裨益。
日本經濟產業省於2022年8月31日公布「伊藤報告3.0版」(伊藤レポート3.0)和「為協力創造價值之綜合揭露、對話指南2.0版」(価値協創のための統合的開示・対話ガイダンス2.0,簡稱價值協創指南),強調企業永續轉型重要性。所謂永續轉型,係指社會永續發展與企業永續發展必須「同步」,及企業為此需要在經營面和產業面進行之改革。 「伊藤報告3.0版」整理企業推動永續轉型應採取之措施,包括必須根據社會永續性擘畫未來方向,並制定可實現長期價值之企業戰略、關鍵績效指標(Key Performance Indicators, KPI)、治理目標等。此外,伊藤報告也指出供應鏈全體(包含中堅、中小企業和新創企業等)和投資鏈上之參與者,都需要推動企業永續轉型。 為強化企業經營以實現永續轉型,經濟產業省同步修正「價值協創指南2.0版」,調整企業資訊揭露及對話方式,讓過程可以更有效率及建設性。指南修正重點包括:(1)全部項目都強調為實現永續社會,企業長期且持續提供價值的重要性及因應方向;(2)新設長期戰略項目;(3)確保「氣候相關財務揭露(Task Force on Climate-related Financial Disclosures, TCFD)」所提出之治理、戰略、風險管理、指標與目標之揭露架構與整合性;(4)於項目「實施戰略(中期經營戰略等)」中,強調人才戰略和人才投資重要性;(5)新設實質對話、約定項目。
美國聯邦上訴法院維持地方法院之原判,判定暢銷藥物Plavix 所基於的關鍵專利為有效繼美國紐約南區地方法院於2007年6月判定暢銷藥物Plavix所基於的專利為有效後,美國聯邦上訴法院於2008年12月再次認定Plavix之專利為有效。此判決有助於阻止Plavix學名藥進入美國市場直至該專利於2011年到期。 Plavix為一降低血液黏稠度之藥物,乃Bristol-Myers Squibb Co. 公司最銷售之產品及Sanofi-Aventis公司第二銷售之產品。加拿大Apotex公司宣稱Plavix之專利為無效,於2006年開始在美國販售Plavix 之學名藥。Bristol-Myers Squibb 與Sanofi-Aventis於贏得訴訟後表示將要求Apotex Inc.支付於販售學名藥期間對兩家藥商所造成的損失。 澳美國聯邦上訴法院法官表示地方法院已徹底的討論Apotex 所提出的專利無效論點,否決Apotex所提出的該專利並未包含新發明及Sanofi-Aventis之科學家使用已知研究方法及已知化合物製成Plavix 之主要組成物。上訴法院法官表示於判斷非顯而易見上,使用「後見之明」(hindsight)是不適合的。 針對此判決,Apotex公司表示他們認為上訴法院之決定為錯誤的並將持續努力尋求於美國銷售有品質的且一般大眾負擔得起的Plavix 學名藥。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
健康食品的管理法規