美國參議院以95對0票通過了「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008),該法案主要是為了增補「2007年基因資訊平等法」(The Genetic Information Nondiscrimination Act of 2007)所制定。 「2008年基因資訊平等法」的內容主要為:1.保險業者不得基於被保險人的基因資訊,拒保或是提高保費,也不得要求被保險人提供其基因資訊以供保險用途,除非符合該法的例外規定。2.雇主不得以員工的基因資訊來限制、隔離、分級員工的工作,更不可據此來剝奪員工的工作機會。但是,本法所稱的基因資訊不包含個人的性別與年齡。 在本法通過之前,美國已有41個州立法保護個人的基因資訊被保險公司使用,並且進行不平等的對待;另有32個州立法保護員工因為基因資訊,兒在工作場合受到歧視。美國並於2000年發佈行政命令(Executive Order 13145),禁止利用基因資訊歧視聯邦單位的員工;另外,「1996年醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act of 1996, HIPAA)也針對歧視做了若干的保護,但是仍有許多漏洞,諸如沒有限制保險公司收集被保險人的基因資訊,或是沒有禁止保險公司要求被保險人進行基因檢測等,所以觀察家認為本法的通過對於個人權利保護是一項進步,但是遺傳病醫藥業者與研究者卻憂慮本法阻礙了醫療研究的發展。
檢視英國無線寬頻規畫方向Ofcom從行動載具、應用程式的蓬勃發展,預見英國10年內將會超過500億台載具透過與機器對機器通訊(Machine-to Machine Communication,M2M)、智慧聯網(Internet of Things)連接,應用在各種領域,包括運輸、健康照顧、能源及農業。有鑑於新興服務普及後,將使2030年民眾使用行動數據總量將是現在25倍,Ofcom在今(2013)年11月以頻譜有效利用為宗旨,提出英國無線通訊基礎藍圖諮詢。 根據本份藍圖顯示,Ofcom為了促使頻譜有效利用,除了持續評估廣播、無線相機與麥克風移頻可行性外,已確認的頻譜規畫為以下三個方向: 1、2.3GHz與3.4GHz: Ofcom已與國防部(Ministry of Defence)共同合作,將原本公部門使用的2.3G、3.4G頻段,轉移至商業使用,預計將於2015-2016年進行拍賣。除此之外,Ofcom將持續與政府部門合作,讓更多頻段能釋出於商用。 2、700MHz:為了讓民眾皆可得到「黃金頻譜」(Prime Spectrum)所帶來之利益(例如具有高度覆蓋性), Ofcom已規劃2018年將釋出部分頻譜供行動寬頻使用,讓更多民眾可享有無所不在網路帶來的便利性。 3、「閒置頻譜」(White Space):英國未來6個月內,將會超過20個組織參與Ofcom所推動的閒置頻譜技術試點計畫。Ofcom將透過各種創新應用服務的測試,讓閒置頻譜與新興服務可相顯益彰。 Ofcom行動寬頻政策除了頻譜重新規劃,解決未來英國行動數據可能產生的「容量危機」(capacity crunch )外;另一方面,政府亦透過提高3G業者涵蓋義務、賦予1張4G執照具有覆蓋義務、以及促使偏遠地區增加基礎建設等方式,維護民眾取得完善服務品質。因此,從上述的政策走向,可以預見英國業者未來所提供的行動寬頻,將朝向穩定的服務與合理的價格演進。當民眾使用新興服務不再有網路中斷、或費用過高之疑慮後,將會增加民眾對資通訊軟、硬體的黏著性,使國家更具有競爭力。
2013年全球智慧財產權申請量顯見成長,中國大陸佔居首要世界智慧財產權組織(WIPO)於2014年12月所公布的世界智慧財產權指標(World Intellectual Property Indicators)基準報告指出,商標、工業設計及實用新型的申請量較前一年度成長,並以中國,美國和日本居前三位;另就申請類別而言,總成長比率分別為專利占9%、商標占6.4%、工業設計占2.5%、和植物品種占6.3%。 報告統計結果顯示,2013年全球專利申請案件約260萬件,比起前一年成長了9%,其中,中國大陸占總申請量的三分之一,其次為美國占總申請量的22%,日本申請量達32萬筆,排名為全球第三位。 報告另指出,專利申請領域依序為,電腦技術佔7.6%、電子機械佔7.2%、測量佔4.7%、數位通訊佔4.5%及醫療技術佔4.3%。 除專利外,其他的智慧財產申請情況,商標申請量上升近500萬件,亦以中國大陸排名首要。另工業設計申請案約達124萬筆,較前一年度成長約2.5%,中國大陸占總申請量的53%。 WIPO總幹事Francis Gurry表示,綜觀全球智慧財產申請全貌,中國大陸及美國於智慧財產權申請量仍明顯成長,而相對於歐洲及日本整體申請量則有明顯衰退之趨勢。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。