本文為「經濟部產業技術司科技專案成果」
美國能源部今(2012)年5月宣布1千1百萬美元的預算,獎勵小型企業發展潔淨能源創新研究與科技。美國的小型企業並非以營運的領域來區分,而且必須合於美國聯邦法規(13 CFR 121)中對於小型企業的規範,另外,美國小型企業管理局(U.S. Small Business Administration,SBA)對於各種營利活動亦建立有大小區分的標準,依照不同的行業別,就員工人數或營業額的數目訂立區分標準。因為企業大小的區分,在美國政府採購契約發包的程序上極為重要,因為他們確保,為大小不等的小企業之間提供公平的競爭基準,而這些區分標準同時也適用在SBA的貸款/補助計畫以及能源部小型企業創新研究計畫(Small Business Innovation Research ,SBIR)與小型企業技術移轉計畫(Small Business Technology Transfer ,STTR)上。 能源部此次小型企業創新研究計畫是歐巴馬政府為扶持小型企業,增加美國就業機會政策的一部分,計畫內容在於,給予每個小型企業最高15萬美元的補助金,只要企業的業務致力於發展創新能源技術,製造新的工作機會,以提高美國在世界的經濟競爭力,這些獲選企業在未來兩年內,可以參加第二階段的競賽,並將有機會獲得高達2百萬美元的獎勵金,目前已有67個小型企業,總共75項創新研究計畫,包括風力渦輪機、燃料電池技術以及煤炭能源等的相關研究工作,這些獲選的小型企業遍佈全美各州。 美國政府認為,小型企業為其經濟體的主幹,提供全美二分之一的工作機會,並且在國內持續製造三分之二的新就業機會,重要的是,這些企業正在幫助美國減輕對進口石油的依賴,保護美國的環境,降低環境污染。而為了支持這些小型企業在國內經濟體所扮演的重要角色, 在能源部主責進行的SBIR計劃和STTR計劃中,持續支持科學卓越和技術創新,以達強化國家經濟的目標。
英國衛生部發布基因檢測與保險自律行為準則英國衛生部(Department of Health and Social Care)於2018年10月23日發布基因檢測與保險自律行為準則(Code on genetic testing and insurance-A voluntary code of practice agreed between HM Government and the Association of British Insurers on the role of genetic testing in insurance),該準則係由英國政府及英國保險業者協會(Association of British Insurers, ABI)共同制定,旨在取代先前的「基因與保險之協定與延期實施」(Concordat and Moratorium on Genetics and Insurance)文件,並以更易於理解的方式呈現原「基因與保險之協定與延期實施」之內容。 準則中列出八項承諾,此八項承諾為ABI代表其成員議定: 承諾一:保險業者(Insurers)會公平對待要保人(applicants)。保險業者不會要求或迫使任何要保人進行預測性或診斷性基因檢測;若要保人已進行預測性基因檢測,保險業者亦不會對其作出差別待遇,除非有如下之情況。 承諾二:列入附錄一之疾病類型並超過以下金額之保單,保險業者始得要求要保人提供預測性基因檢測之結果: 人壽保險-500,000英鎊 /人。 重大疾病險-300,000英鎊 /人。 收入保障險-30,000英鎊 /年。 目前列入附錄一之類型僅有亨丁頓氏舞蹈症(Huntington’s disease)之人壽保險總額超過500,000英鎊之情形。 承諾三:保險業者不會要求要保人提供: 要保人或被保險人於承保期間所進行之預測性基因檢測結果。 非為要保人或被保險人本人(如要保人或被保險人血親)之預測性基因檢測結果。 於科學研究背景下獲得之要保人或被保險人預測性基因檢測結果。 承諾四:若保險業者基於承諾二之規定要求要保人提供預測性基因檢測結果,亦不會針對該結果制定過於苛刻(disproportionate)的條款或條件。 承諾五:保險業者須於要保人簽約前提供明確之訊息,以說明: 根據本準則,要保人在何種情況下必須或無須提供相關預測性基因檢測結果。 若要保人自願提供對其有利的預測性基因檢測結果,保險決策將如何被影響。 承諾六:若要保人基於意外或自願向保險業者提供預測性基因檢測結果,保險業者可考量要保人之利益調整保單內容;若檢測結果對要保人不利,除非符合承諾二之情形,否則保險業者將忽略該檢測結果。 承諾七:販售人壽保險、重大疾病或收入保障保險之保險業者將: 每年向ABI報告其遵守本準則之情況。 根據本準則問答部分之詳細資訊,建立投訴程序(complaints procedure)。 每年向ABI報告與本準則運作上相關之投訴情形。 承諾八:販售人壽保險、重大疾病或收入保障保險之保險業者將指定至少一名經培訓之基因核保人(Nominate Genetics Underwriter, NGU),負責與遺傳資訊(genetic information)及遵守本準則相關之事項,且NGU之人數應與業務規模成比例。
美國發布2012「更佳建築倡議」計畫進度報告美國於2011年2月份啟動「更佳建築倡議」(Better Building Initiative)計劃,期在2020年達成降低工業和商業之能源密集度百分之二十的目標。展望2013年,美國能源部於2012年底發布該倡議之進度報告(Progress Report)。報告開宗明義指出若干有礙建築能源效率之投資障礙,擬如下: (1) 尚缺少能源效率投資成本節省之實證數據 (2) 尚缺少潛在市場和技術解決方案之相關資訊 (3) 能源效率作為商業最佳實踐尚未普遍被接受。基此,能源部致力於發展以下策略: (1) 創新產業研發 (2)促進能源效率投資 (3) 培育清潔能源之技術人員 (4) 強化聯邦公部門示範作用。 在創新產業研發面向,能源部成立「更佳建築聯盟」(Better Buildings Alliance),此乃結合零售、食品、商業房地產、醫療照護、高等教育產業,預計於2013年將擴大到州和地方層級;聯盟成員將承諾設定節能目標,擇定高效率之建築科技進行採購。其次,在促進能源效率投資上,報告指出,因市場尚缺乏相關數據資訊(data information),難就能源效率之市場價值(value)進行驗證;將建立起相關機制,作為未來融資和建築物改善的基礎。最後,在強化公部門示範作用上,透過聯邦能源管理計畫(Federal Energy Management Program, FEMP)和節能績效契約(Energy Savings Performance Contract, ESPC),持續強化能源技術服務公司(Energy Service Companies, ESCO)進行聯邦建築物節能效益之提升和擔保。 綜上,可得知建築能源效率數據資訊之欠缺乃目前美國能源部在推展「更佳建築倡議」面臨的最大問題。查美國國會於2012年12月初通過「美國製造業能源技術修正法案」(American Energy Manufacturing Technical Corrections Act),就前述聯邦能源管理計畫(FEMP)和資料蒐集標準(Data Collection)進行規範,相關法制政策趨勢殊值注意。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。