數位技術改變人們的生活,為使英國人民、企業及組織接受數位時代的變革,並確保英國做好脫離歐盟(European Union)的準備,英國數位文化媒體及運動部(Department for Digital, Culture Media & Sport)修正1998年的資料保護法(Data Protection Act 1998),於2017年9月14日,提交2017資料保護法草案(Data Protection Bill 2017)(以下簡稱:本草案)予上議院審議,以因應數位時代的來臨。
此次本草案修正的方向為:
本草案除建制一個一般資料處理、執法程序及國家安全的資料保護體系外,更加強對於學術研究、金融服務及兒童保護等領域的資料保護,以因應數位時代之變革。
為了使歐洲的著作權法規更符合數位時代及單一市場所需,歐盟執委會(European Commission)於2016年9月所提出的「數位單一市場著作權指令」(The Directive on Copyright in the Digital Single Market)提案,於今年2月13日由歐洲議會(European Parliament)與歐盟理事會(Council of the EU)、歐盟執委會達成最終協議,歐洲議會與歐盟理事會並分別於3月26日及4月15日通過提案,歐盟理事會於4月17日簽署正式指令。新指令的重點內容包含: 文字與資料探勘(Text and data mining):第3條規定,研究組織為了科學研究而需對文字與資料探勘時,得例外對著作進行重製、擷取(extraction)。 強化著作人和表演者在數位環境中的地位:第14條規定,當著作人和表演者將著作權讓與或授權給出版商後,出版商必須定期向著作人和表演者告知這些著作的利用情形。另外,第15條規定,如果著作人和表演者覺得先前約定的報酬太低時,可以要求與出版商重新磋商更公平且適當的報酬。 賦予新聞內容重製權及向公眾傳播權:規定於第11條,使用新聞的內容(尤其網路新聞)時,須向新聞出版者取得重製權及向公眾傳播權的授權。另外,本次通過的正式指令,已無之前提案中具有爭議的「須得到新聞出版者同意才能使用新聞頁面超連結」條文內容,而無先前的超連結稅(Link Tax)爭議。 網路服務提供者義務:第13條規定,網路服務提供者如Instagram、YouTube等,有義務透過有效的機制,迅速刪除未經著作權人授權許可的內容,並防止這些未經授權的內容重新上架,以保護著作權人的利益。 不過,從歐盟執委會提案之後,第13條就引起了德國民眾的強烈反彈,從今年2月最後一個禮拜開始,德國各大城市展開了一連串名為「反對歐盟著作權改革法案」(gegen EU-Urheberrechtsreform)的抗議活動,包含線上連署及上街遊行,並已擴散至其他歐盟會員國。抗議訴求認為,使用所謂的「上傳過濾器」(Upload-Filter)會對網路的言論自由和多樣性產生巨大影響,由於在實際操作上,網路服務提供者只會依據著作權人所提供的著作授權清單,利用上傳過濾器自動過濾未得到授權的內容,因此經合法使用其他著作後所創作的新著作(例如文章內含有合法引用的內容),可能會成為被過濾、刪除的對象,因為上傳過濾器可能無法判別法定例外的合法使用。所以上傳過濾器被認為是有爭議的審查手段。 雖屢有爭議,但本次通過數位單一市場著作權指令,使歐盟的著作權法規更能適應當今數位世界,在音樂串流服務、影音點播平台、新聞彙整平台、以及各種社群平台已成為人們接觸著作和新聞的主要門戶時,加強網路使用者享有的自由和權利,創作者也將獲得更好的保護和報酬,以創造更繁榮的網路經濟。
美國環境保護署(EPA)發布顯著新種使用規則(SNURs),將影響單壁及多壁奈米碳管(Carbon Nanotubes)之使用美國環境保護署(Environmental Protection Agency,以下簡稱EPA)於2010年9月17日聯邦政府公報中,依據毒性物質管制法(Toxic Substances Control Act,以下簡稱TSCA)section 5(a)(2)授權,發布了顯著新種使用規則(Significant New Use Rules,以下簡稱SNURs)的最終規則(final rule)。此項規則於2010年10月18日生效,任何想要製造、輸入以及加工單壁奈米碳管(single-walled carbon nanotubes,以下簡稱SWCNTs)及多壁奈米碳管(multi-wall carbon nanotubes,以下簡稱MWCNTs)兩項化學物質者,必須依照TSCA section 5(a)(1)要求,在進行上述利用活動的至少90天前,報經EPA核准,否則不得使用。 事實上,EPA曾於前(2009)年6月24日發布上述SNURs的直接最終規則(direct final rule),徵詢公眾意見,並在同年8月21日撤回該規則。在重新提案的規則中,主要是新增SWCNTs、MWCNTs釋放於水中的顯著新種使用態樣,並將已完全反應、結合或嵌入已完全反應之聚合物基(polymer matrix)以及嵌入不再進行機械加工外其他處理之永久硬性聚合物形式(permanent solid polymer form)之SWCNTs、MWCNTs物質,排除在新SNURs適用範圍之外。 目前,依照TSCA section 5(e)之規定,若系爭之化學物質已列名於TSCA section 8(b)所建立之現存(existing)化學物質目錄(INVENTORY)中,其他化學物質生產者欲生產該種化學物質時,並不需再向EFA進行通報程序。然而,若EFA對該列名之化學物質曾發出TSCA section 5(e)下之具風險性命令(risk-based order),則相關之化學物質生產者須於生產前依據TSCA section 5(a)(2)規範中之SNURs規定通報EFA,使得EFA於生產前仍有再次檢驗該系爭化學物質的機會。 這一次,EPA以制訂SNURs之方式,要求所有製造、輸入、加工該項化學物質者,有義務通報任何與原同意命令所定條款不同的使用活動。這樣的規範變動,預計將對奈米材料的製造及運用活動造成不小的影響。
演算法歧視將適用於《紐澤西州反歧視法》2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。