英國發布「2017年資料保護法」草案,以符合數位時代之需求

  數位技術改變人們的生活,為使英國人民、企業及組織接受數位時代的變革,並確保英國做好脫離歐盟(European Union)的準備,英國數位文化媒體及運動部(Department for Digital, Culture Media & Sport)修正1998年的資料保護法(Data Protection Act 1998),於2017年9月14日,提交2017資料保護法草案(Data Protection Bill 2017)(以下簡稱:本草案)予上議院審議,以因應數位時代的來臨。

  此次本草案修正的方向為:

  1. 一般資料處理(§3-26):
    一般資料處理係依歐盟的一般資料保護規則(General Data Protection Regulation,簡稱GDPR)為標準,將歐盟GDPR一般資料處理的相關規範之標準制定於此次修正之資料保護法中,並確保健康、社會安全與教育資料等個人資料之安全維護。另對於個人資料的近用與刪除予以規範以強化公共政策,並維護國家安全。
  2. 執法程序(§27-79):
    拜科技進步所賜,網路世界如遠弗屆,透過網路跨境傳輸、分享、蒐集資料,並非難事,因此,更需要一個強而有力且一致性的個人資料保護規範框架。警方、檢方或司法刑事機關為偵查犯罪行為,而蒐集、處理或利用個人資料,須有明確、正當、合法的執法目的,對於國際間個人資料的交流利用須依明確的程序規範並賦與相當之保護措施,確保英國退出歐盟後,仍可繼續與歐盟各成員國間聯手偵辦重大犯罪案件,以維護國際間之資訊安全。
  3. 國家安全(§80-111):
    因國家安全事項不在歐盟法(EU Law)規範範圍之列,故GDPR或指令法律(Law Enforcement Directive,LED)之效力不及於各成員國對於國安全之情資蒐集。故英國本次修法參採個人資料保護公約(Convention for the Protection of Individuals with regard to Automatic Processing of Personal Data,又稱現代化公約108(modernised Convention 108))之精神,將情報單位基於維護國家安全之必要蒐集個人資料之規範,明文納入個人資料保護法之適用,以符合國際間的資訊安全規範標準。
  4. 資訊委員與執行(§112-168):
    資訊委員(Information Commissioner)係指保護資訊權之公共利益、促使公務機關公開資訊與維護個人資料隱私權之獨立政府官員,得主動偵查犯罪,並得通知或教育廣泛的資料管理者,以提高資料保護之標準。繼2010年賦與資訊委員針對金融犯罪之執法權限之後,本草案亦增列意圖還原已去識別化之個人資料、禁止不當揭露個人資料兩種犯罪類型,賦與資訊委員更廣的處理權責。違反資料保護法(如不當揭露個人資料),將處以行政罰責(最高可處1,700萬英鎊/2,000萬歐元罰鍰)。

  本草案除建制一個一般資料處理、執法程序及國家安全的資料保護體系外,更加強對於學術研究、金融服務及兒童保護等領域的資料保護,以因應數位時代之變革。

相關連結
你可能會想參加
※ 英國發布「2017年資料保護法」草案,以符合數位時代之需求, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7882&no=67&tp=1 (最後瀏覽日:2025/11/22)
引註此篇文章
你可能還會想看
電信業者提供視訊服務之外國法制研析

歐盟執委會發布《2019歐盟產業研發投資計分板》,美國和歐盟為世界研發投資最主要地區

  歐盟執委會(European Commission, EC)於2019年12月18日發布《2019歐盟產業研發投資計分板》(The 2019 EU Industrial R&D Investment Scoreboard)。產業研發投資計分板是歐盟每年出具一次的報告,2019年計分板報告包含2500家在2018-2019年間投入最多研發資金的企業,分別位於全球44個國家/地區,每一企業的研發投資金額超過3000萬歐元,總計約為8234億歐元,為全球研發支出的90%。在這2500家企業中,551家來自歐盟公司,為投資總額的25%;769家來自美國,為投資總額的38%;318家來自日本,佔13%;507家中國公司,佔12%。   報告中指出,2018年企業研發投資總額較2017年增加8.9%,主要是中國在全球研發資金投入比例不斷增加。另外,研發投資高度集中於大型企業;在這2500家企業中,前10大、前50大企業分別佔研發總額的15%和40%。前50大企業中,最多者為美國企業22家和歐盟企業17家。再從研發投資領域觀察,前三大領域分別為資通訊產業(38.7%)、健康(20.7%)和汽車產業(17.2%),佔總量的76.6%。但每一個國家重視的領域不盡相同,例如歐盟投資20%在資通訊、21.6%在健康、31%汽車,而美國的資通訊研發投資佔了52.8%、26.7%在健康,僅有7.6%在汽車。   再從個別企業研發投資排名來看,前四大企業分別為Alphabet、Samsung、Microsoft和Volkswagen。另外,報告統計在過去的15年中,有8家企業在全球研發投資金額排名中上升了70名以上,分別為:Alphabet、華為、蘋果、Facebook、阿里巴巴、Celgene、Gilead Sciences和德國馬牌;也代表這15年間資通訊、生技與汽車產業發展的重要性。

日本經產省發布「新創企業的經濟外溢效果」調查摘要

為了解2022年公布《新創企業發展五年計畫》(スタートアップ育成5か年計画)(下稱新創計畫)後之情形,日本經濟產業省(簡稱經產省)針對新創企業造成之影響進行調查,於2024年7月22日發布「新創企業之經濟外溢效果」(スタートアップによる経済波及効果)調查摘要(下稱調查摘要),簡述如下: 1.新創企業之經濟貢獻:新創計畫期望透過新創企業提昇產業競爭力,並提供青年就業機會,故積極進行人才培育與輔導創業。根據調查摘要,自新創計畫執行後日本新創企業所創造之國內生產毛額(Gross Domestic Product, GDP)為10.47兆日元(約新台幣2.1兆元),若包含外溢效果(Spillover Effect)則為19.39兆日元(約新台幣3.88兆元),並創造52萬個就業機會。 2.新創企業改變經濟結構之潛力:根據調查摘要,過去10年間日本新創公司併購案件增長22%,顯示其經濟實力提升;且新創公司中女性主管的比例增加,亦顯示其可改善日本女性職場地位。 3.創投資金注入引發新創企業之外溢效果:新創計畫鼓勵創投公司投資新創企業,由於擁有更多之週轉資金,與未接受創投的企業相比,接受創投的企業在擴大就業和創新方面表現更佳。新創計畫推動後,目前日本創投對新創公司之投資金額增加7.8倍(70%之新創公司獲得創投公司投資),並創造13.94兆日元(約新台幣2.8兆元)之GDP。

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP