德國新聯邦個人資料保護法將於2018年5月施行

  德國聯邦議院在今年4月27日通過「個人資料保護調整和施行法」(Datenschutzanpassungs- und Umsetzungsgesetz, DSAnpUG),其中包含新的德國聯邦個人資料保護法(Bundesdatenschutzgesetz, BDSG)。在這部新的法案中,已施行40年的 BDSG進行大幅調整以符合歐盟個人資料保護規則(Datenschutzgrundverordnung , DSGVO)的標準。

  所有歐盟成員國將於2018年5月25日開始適用DSGVO的規定。DSGVO希望能在歐盟成員國內,形成一套具有法律統一性、標準性與高水準的個人資料保護制度。這也意味著侵害個人資料保護的違法行為,如:未使用適當的加密技術以確保個人資料安全,可能受到更嚴重的處罰,最高可達2,000萬歐元或企業全年營業額的4%。

  DSGVO的目的在確保歐盟成員國間個人資料保護的共同法制標準,但考量到各成員國間的區域差異,DSGVO也提供國家立法者約60條的開放性條款(Öffnungsklauseln)─允許許多地區的成員國在特定條件下可不依循DSVGO標準。德國聯邦政府在新的BDSG,也運用了這些開放性條款。但有批評者認為,部分新的BDSG規範內容已超越DSGVO的條文規範,如:個資保護專員(Datenschutzbeauftragten)的就業保障。因此,新的BDSG與歐盟法律不符的部分,很可能被宣布違反歐盟法律。另一方面,舊的BDSG僅有48條規定,而新的BDSG則超過85條規定,且更為複雜,這都提高了法律適用上的難度。

  雖然新的BDSG其適法性仍有爭議,且是否能通過司法審查亦屬未知。但盡管如此,隨著DSAnpUG 及新的BDSG法律條文制定,未來德國個人資料處理的基本法律框架已確定。由於企業個人資料處理的基本原則已明訂於DSGVO中,且新的BDSG仍是依照DSGVO的規範而制定,因此企業應盡速審查和調整他們的契約和流程,以符合DSGVO的規範要求。

相關連結
※ 德國新聯邦個人資料保護法將於2018年5月施行, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7905&no=67&tp=1 (最後瀏覽日:2026/01/28)
引註此篇文章
你可能還會想看
挪威政府提案修改著作權法,將處罰把CD音樂複製成MP3檔案之行為

  為解決日益猖狂的網路侵權行為,挪威政府已提出著作權法修正草案,針對侵害著作權及網路盜版行為處以罰金及三年以下有期徒刑之刑責。其中最主要的就是要遏止破解DVD及CD之科技保護措施以及處罰提供軟硬體進行破解之行為。不過,在修正草案下,為個人使用之目的而複製CD或DVD之行為,即便在此過程中意味有破解科技保護措施之行為存在,仍不構成違法;但是,若破解科技保護措施而將CD歌曲轉換成MP3格式則構成侵權行為。   此一修正案的提出雖獲業界一致喝采,但是亦受到學者的抨擊,認為此修正案內容定義不清,完全無法執行。由於挪威國會預計於今年三、四月審查此案,若能順利過關,最快將於今年七月正式施行,不過未來如何發展,仍存在相當變數,值得追蹤觀察。

論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心

論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日   科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。   為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。   為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。   另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。   研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。   NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。   GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。   為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).

美國參議員提案修改股票選擇權(stock option)租稅處理優惠

  美國參議員Carl Levin最近提出一項名為「終止公司股票選擇權租稅優惠法」(Ending Corporate Tax Favors for Stock Options Act, S. 2116,以下簡稱:股票選擇權租稅優惠終止法)的草案,主要目的是希望改變公司對於股票選擇權費用化的租稅處理(tax treatment of corporate stock option deductions)。   就租稅意義而言,公司發給員工(包括高階經理人及一般員工)的股票選擇權為薪資的一種,而根據美國內地稅法規定,目前公司在申報股票選擇權的薪資支出(compensation expense)減項時,可以申報的費用比公司帳簿上所登載的更高。由於此一稅法上獨厚股票選擇權的處理,使得近年來許多美國企業支付給主要高階經理人的薪資,有一大部分是股票選擇權,此現象在科技產業亦甚為顯著,其結果造成公司高階經理人與一般員工的薪資差距越益擴大。   「股票選擇權租稅優惠終止法」要求公司於薪資支出項下申報的股票選擇權費用,必須與公司帳簿所記載的數目一致,同時,股票選擇權也應與其他類別的公司薪資費用一樣,同樣受到1百萬美元的費用上限之申報限制,至於股票選擇權申報費用的時點,則不須要等到選擇權行使(exercise)的年度。

日本文部科學省發布2021年科學技術與創新白皮書,著眼於韌性社會願景與疫後對策的具體措施

  日本文部科學省於2021年6月8日公布「2021年科學技術與創新白皮書」(令和3年版科学技術・イノベーション白書),為文部省就政府所訂立之科技政策藍圖,所發布的年度報告書。本年度白皮書循往例,區分為第一部分與第二部分。第一部分著重同年3月發布之第6期科學技術與創新基本計畫(第6期科学技術・イノベーション基本計画)框架下,為達成Society 5.0之願景政府所規劃的一系列政策;第二部分則回顧去(2020)年,政府針對科技與創新創造所採取的各項對策。   本白皮書就韌性社會所需科研項目、強化研究能量的激勵措施等層面,提出以下具體方向: (1)推動社會數位化與零碳排放(脱炭素化)   為強化網路虛擬空間與現實社會間的資源共享與互動發展,虛擬空間之基礎技術方面,持續研發超級電腦、AI與量子電腦,利用所累積的資料運用於深度分析與模擬,並實現超高速計算與量子通訊。虛擬空間與現實社會結合之應用型技術研發方面,包含能輔助身體運作的外部機械、透過自駕車系統銜接高齡化社會交通需求、以及遠端遙控之機器人技術應用於高風險作業環境。推動零碳排放、強化防災能量等面向,則藉由綠色成長戰略、綠色創新基金等政策,發展核融合、次世代蓄電池、精準預測氣候變遷之系統等新興技術;運用AI模擬等強化地震與天災的預報精準度,提升社會應對大規模自然災害的韌性。 (2)「知識」的整合創造與利用,以用於解決各類社會議題   考量社會議題的解決,不僅在於前瞻性自然科學技術的研發,尚需同步理解人類社會的多樣性。同時,人文社會科學近年來,亦多有採用自然科學的研究方法。因之,白皮書主張兩方的跨域知識結合,應用上強調須以人為本來解決各類社會議題。 (3)強化基礎研究能量   應著手改善出於個人經濟因素,放棄申請博士後課程的現況,創造年輕研究者敢於投入自身有興趣且具挑戰性研究課題之環境。基此,白皮書提出設置10兆日圓規模的大學基金,提升約15,000名博士後課程學生的待遇,並推動「創造發展性研究支援事業」(創発的研究支援事業)措施,穩定提供10年期間的研究資金。 (4)COVID-19疫情對策   持續投入研發治療方法(如檢驗抗病毒藥物Favipiravir用於治療COVID-19的效果與安全性)、疫苗與相關醫療器材,並推動以遠距方式進行研究活動,導入機器人技術等來發展自動化實驗、於虛擬空間內進行實驗等;另一方面,有效的防疫對策(如避免人潮密集、密切接觸、密閉空間的「三密」),根基於COVID-19的最新科研成果,因此需讓科學性、客觀性資訊透過適切的管道(如日本科學未來館網站),以淺顯易懂的形式向大眾宣達。

TOP