德國聯邦議院在今年4月27日通過「個人資料保護調整和施行法」(Datenschutzanpassungs- und Umsetzungsgesetz, DSAnpUG),其中包含新的德國聯邦個人資料保護法(Bundesdatenschutzgesetz, BDSG)。在這部新的法案中,已施行40年的 BDSG進行大幅調整以符合歐盟個人資料保護規則(Datenschutzgrundverordnung , DSGVO)的標準。
所有歐盟成員國將於2018年5月25日開始適用DSGVO的規定。DSGVO希望能在歐盟成員國內,形成一套具有法律統一性、標準性與高水準的個人資料保護制度。這也意味著侵害個人資料保護的違法行為,如:未使用適當的加密技術以確保個人資料安全,可能受到更嚴重的處罰,最高可達2,000萬歐元或企業全年營業額的4%。
DSGVO的目的在確保歐盟成員國間個人資料保護的共同法制標準,但考量到各成員國間的區域差異,DSGVO也提供國家立法者約60條的開放性條款(Öffnungsklauseln)─允許許多地區的成員國在特定條件下可不依循DSVGO標準。德國聯邦政府在新的BDSG,也運用了這些開放性條款。但有批評者認為,部分新的BDSG規範內容已超越DSGVO的條文規範,如:個資保護專員(Datenschutzbeauftragten)的就業保障。因此,新的BDSG與歐盟法律不符的部分,很可能被宣布違反歐盟法律。另一方面,舊的BDSG僅有48條規定,而新的BDSG則超過85條規定,且更為複雜,這都提高了法律適用上的難度。
雖然新的BDSG其適法性仍有爭議,且是否能通過司法審查亦屬未知。但盡管如此,隨著DSAnpUG 及新的BDSG法律條文制定,未來德國個人資料處理的基本法律框架已確定。由於企業個人資料處理的基本原則已明訂於DSGVO中,且新的BDSG仍是依照DSGVO的規範而制定,因此企業應盡速審查和調整他們的契約和流程,以符合DSGVO的規範要求。
委託研究開發之智慧財產治理運用指引(委託研究開発における知的財産マネジメントに関する運用ガイドライン,以下簡稱委託研發智財運用指引)為日本經濟產業省制定並於2015年5月15日公布,用於規範該省、或該省所轄獨立行政法人委外執行技術研發計畫而產出的各項智慧財產權之管理運用事宜。 日本於產業技術力強化法第19條納入拜杜法(Bayh-Dole Act)的意旨,建立了政府資助研發所生的智財權成果歸屬受託單位的原則,但同時為促進研發成果的第三人商業化利用,落實國家資助技術研發成果獲得充分運用以達成國家財富最大化的政策方針,因而作成該指引。 委託研發智財運用指引以委託機關和受託單位為規範對象,首先揭示了研發成果商業化利用的重要性,並以此為核心思維,賦予委託機關須就個別委外研發計畫,在計畫開始前訂定計畫智財權管理方針,並向潛在計畫參加者提示的義務,同時,委託機關須確保委託契約中包含智財權等成果管理運用之約款,例如針對成果有無適用日本拜杜法規定、受託單位承諾在相當期間內未妥善運用成果時開放第三人利用等;另一方面,受託單位則有義務就計畫設置智財營運委員會,負責在計畫執行期間處理智財權管理事宜。
FCC主席Julius Genachowski警告美國恐有頻譜危機美國聯邦通訊傳播委員會(Federal Communications Commission, FCC )主席Julius Genachowski表示,美國政府正努力規劃商業用途頻譜(spectrum)供給量,以滿足通訊科技服務發展需求。惟諸多產業專家預測無線通訊服務運用導致頻寬需求快速增加,無線通訊擁塞情況恐將嚴重惡化。 儘管FCC已藉頻譜拍賣釋出不少頻譜,且2009年6月全美廣電數位化後(DSO),一定要件開放業者毋須取得頻譜執照便可使用所謂的「閒置頻譜」(interleaved/white space),但是頻譜匱乏的問題仍無法解決。 對此,FCC允諾將會弭平頻譜供給需求間的落差,並且列為FCC的首要任務之一。未來FCC將透過非商用頻譜重分配與鼓勵發展更有效率使用頻譜之科技,以期解決頻譜不足的窘境。 產業界與公眾安全通訊相關組織呼籲FCC應提供更多頻譜供無線通訊服務使用。不過FCC亦要求資通訊產業於研發行動寬頻新產品時,須設想頻譜供給不足,研發更有效率使用頻率的通訊技術。產官學三者間,必須相互配合與協調(尤其是業者間的「不歧視原則」),方能有效解決網路通訊擁塞及頻譜匱乏問題。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。
數位歐洲計畫(Digital Europe Programme)數位歐洲計畫(Digital Europe Programme)為歐盟執委會2018年6月提出的策略規畫,已於2019年4月17日由歐洲議會通過;預計2021至2027年間,歐盟將投入92億歐元用於發展高效能運算、人工智慧、網路安全和數位技能培育等領域。數位歐洲計畫目標是確保所有歐洲民眾皆能擁有應對數位挑戰所需的技能、基礎建設及相應的數位監管框架,屬於歐盟發展數位單一市場政策的一部分,預估將創造400萬個就業機會、推動4150億歐元的經濟成長,提升歐盟整體國際競爭力。歐盟為關鍵數位技術提供92億歐元科技預算分配: (1)27億歐元用於高效能運算(預計在2022至2023年建立高效能運算及數據處理能力,2026至2027年將技術導入高階設施設備)。 (2)25億歐元投入人工智慧(支持企業及公部門使用AI、建立安全便利且能儲存大量數據的運算系統、鼓勵會員國相互合作進行AI測試)。 (3)20億歐元用於網路安全技術(採購先進網路安全設備及數位基礎設施、拓展網路安全知識與技能、優化歐盟整體網路安全系統)。 (4)7億歐元投入數位技能培育(加強中小企業短期數位培訓課程、IT專業人員長期訓練、青年企業家培訓)。 (5)13億歐元用於推廣使用數位技術(鼓勵中小企業運用先進數位技術、建構數位創新中心、關注新興技術發展)。