日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。
新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。
新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。
所謂「大麻」實為大麻屬植物,其中除了較常耳聞的娛樂用大麻外,尚包含工業用大麻(俗稱火麻,hemp),兩者區分標準在於四輕大麻酚(THC)成分高低,後者THC成分小於0.3%,難以做為娛樂用,由於大麻於過去曾有相當時間遭各國所禁止,因此與其有關之研究、專利申請案之數量可謂罕有。然而,近年來隨著各國逐漸放寬對大麻的限制,諸多藥商陸續投入以大麻為成分之藥品開發中,並執此取得專利申請,從而引發相關人士提出此種專利究竟是否具備新穎性之疑問。 日前於2018年7月間,美國即有藥商對此提出專利訴訟,全案大致背景如下:United Cannabis Corp.(下同UCANN)對Pure Hemp Collective Inc.(下同Pure Hemp)提出專利侵權訴訟,指稱Pure Hemp所研發之多款含CBD成分之藥物均侵害其編號9,730,911之專利(下同911專利)。而Pure Hemp則反駁,並稱911專利其中第1、5、16、20、25項聲明將此一專利範圍擴張至所有以液體型態存在之高效價大麻二酚(liquid form of high-potency cannabis),因此若其他藥品商以此一成分生產其他藥物,不論作用、成效是否相同,均可能侵害UCANN之專利權。 本案爭點在於:「以大麻中,早已廣泛流通於市面之大麻二酚(CBD)製成之藥品,是否具備專利法上之新穎性?」。對於系爭專利成分「液態高效價大麻二酚」,事實上已於美國銷售多時,從而此一成分是否具備「新穎性」即容有疑問。業界相關人士指出,美國專利及商標局(U.S. Patent and Trademark Office,下同當局)未審酌上開涵蓋過廣之專利聲明以及未顧及系爭專利成分已於市場流通多年此二種情況,即核發專利許可證,可以說是一種行政怠惰。同時間,也有論者較為持平的認為這可能得肇因於大麻專利申請案之前例過少,使得當局專職審核是否具備新穎性要件之相關人員要難查知。此種說法雖然稍有為當局開脫之嫌,但實際上也間接彰顯了專利審查人員於核發此種專利時,有判斷不周的情形。無論如何,目前全案尚在審判中,詳細結果,均有待判決做成後方知一二。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。
歐盟正式通過資料治理法(DGA),歐盟資料共享發展跨出一大步歐盟理事會(Council of the European Union)於2022年5月16日正式通過了資料治理法(Data Governance Act, 簡稱DGA),本法是歐盟執委會(European Commission)於2020年11月提案,經過一年多的意見徵詢與協商,歐盟議會(European Parliament)於今(2022)年4月6日以501票贊成通過,隨後由歐盟理事會通過公布,本法預計將於2023年8月正式生效。 DGA包含幾大面向,除了針對資料中介服務(data intermediation)、資料利他主義(data altruism)、歐盟資料創新委員會(European Data Innovation Board)等機制建立的規定外,在第二章特別針對公部門所持有之特定類別資料的再利用(reuse)進行規定。當公部門持有的資料涉及第三方受特定法律保護的權利時(如涉及第三方之商業機密、智慧財產、個資等),本法規定公部門只要符合特定條件下可將此類資料提供外界申請利用;若為提供符合歐盟整體利益的服務且具有正當理由和必要性的例外情況下,得授予申請對象專有權(exclusive rights),但授權期間不得超過12個月;歐盟應以相關技術確保所提供資料之隱私和機密性。 再者,各會員國應指定現有機構或創建一個新機構擔任提供上述資料類型的單一資訊點(Single Information Point, SIP),以電子方式公開透明地提供資料清單,包含可申請利用之資料的來源及相關描述(至少包含資料格式、檔案大小、再利用的條件等),以提供中小企業、新創企業便利、可信的資料查詢管道。此外,歐盟執委會應建立一個單一近用點(Single Access Point, SAP),提供一個可搜尋公部門資料的電子登記機制(a searchable electronic register of public-sector data),讓使用者得直接搜尋各會員國單一資訊點(SIP)中所提供的資料及相關資訊。 DGA是歐盟2020年2月發布歐盟資料戰略(European Data Strategy)後的第一個立法,歐盟希望透過本法建立一套能提升資料可利用性和促進公私部門間資料共享的機制,以創造歐盟數位經濟的更高價值。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」