日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。

  新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。

  新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

相關連結
※ 日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7909&no=55&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
英國政府提交予國會「人工智慧監管規範政策報告」

  英國政府由數位文化媒體與體育大臣(Secretary of State for Digital, Culture, Media and Sport)與商業能源與工業策略大臣(Secretary of State for Business, Energy and Industrial Strategy)代表,於2022年7月18日提交予國會一份「人工智慧監管規範政策報告」(AI Regulation Policy Paper)。內容除定義「人工智慧」(Artificial Intelligence)外,並說明未來政府建立監管框架的方針與內涵。   在定義方面,英國政府認為人工智慧依據具體領域、部門之技術跟案例有不同特徵。但在監管層面上,人工智慧產物則主要包含以下兩大「關鍵特徵」,造成現有法規可能不完全適用情形: (1)具有「適應性」,擅於以人類難以辨識的意圖或邏輯學習並歸納反饋,因此應對其學習方式與內容進行剖析,避免安全與隱私問題。 (2)具有「自主性」,擅於自動化複雜的認知任務,在動態的狀況下持續判斷並決策,因此應對其決策的原理原則進行剖析,避免風險控制與責任分配問題。   在新監管框架的方針方面,英國政府期望所提出的監管框架依循下列方針: (1)針對技術應用的具體情況設計,允許監管機構根據其特定領域或部門制定和發展更詳細的人工智慧定義,藉以在維持監管目標確定與規範連貫性的同時,仍然能實現靈活性。 (2)主要針對具有真實、可識別與不可接受的風險水準的人工智慧應用進行規範,以避免範圍過大扼殺創新。 (3)制定具有連貫性的跨領域、跨部門原則,確保人工智慧生態系統簡單、清晰、可預測且穩定。 (4)要求監管機構考量更寬鬆的選擇,以指導和產業自願性措施為主。   在跨領域、跨部門原則方面,英國政府則建議所有針對人工智慧的監管遵循六個總體性原則,以保障規範連貫性與精簡程度。這六個原則是基於經濟合作暨發展組織(OECD)的相關原則,並證明了英國對此些原則的承諾: 1.確保人工智慧技術是以安全的方式使用 2.確保人工智慧是技術上安全的並按設計運行 3.確保人工智慧具有適當的透明性與可解釋性 4.闡述何謂公平及其實施內涵並將對公平的考量寫入人工智慧系統 5.規範人工智慧治理中法律主體的責任 6.釋明救濟途徑   除了「人工智慧監管政策說明」外,英國政府也發布了「人工智慧行動計畫」(AI Action Plan)文件,彙整了為推動英國「國家人工智慧策略」(National AI Strategy)而施行的相關行動。前述計畫中亦指出,今年底英國政府將發布人工智慧治理白皮書並辦理相關公聽會。

日本設置「創新藥品等實用化支援基金」促進創新藥品及再生醫療製劑研發上市

日本在2025年2月12日閣議決定「藥機法等部分法律修正案」(原文:医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律等の一部を改正する法律案),送國會本會期審議。其中明文設置「創新藥品等實用化支援基金」,政府預先編列複數年度所需財源,並設有10年時限措施。此項基金業務預定由國立研究開發法人醫藥基盤、健康暨營養研究所(下稱研究所)負責實施,追加創新藥品等實用化支援事業為研究所新業務,並明定至令和18年(2036年)3月31日為止實施,說明如下: (1)為了「創新藥品及再生醫療製劑」(下稱創新藥品等)之實用化,整備研發所必要之具規模的設施及設備,並提供從事於創新藥品等實用化之人得以共同使用,以增加創新藥品等實用化之交流與合作之機會,對於從事此等業務以及其他提供必要支援之事業者(下稱創新藥品等實用化支援事業者),由研究所提供其必要資金及其他支援。 (2)創新藥品等實用化支援事業者欲從事前述支援事業,向厚生勞動大臣提出申請書取得認定。 該基金由政府與製藥企業等共同出資設立,以強化「製藥新創得以創造出創新藥品等之製藥基盤及基礎設施」為目標,對於實施創新藥品等新創進行支援之「創新藥品生態系園區之整備事業者」(例如:育成事業者或製藥企業等),整備育成實驗室(Incubation Lab)、動物實驗設施、臨床試驗用藥製造等設施,以及致力於新創支援之事業者作為補助之對象範圍,明文於實施3年後進行檢討,期能透過此一基金之運作強化創新藥品等之製藥基盤。

歐盟法院裁決:網站「預先選取同意」不構成ePrivacy Directive及GDPR合法有效的同意

  歐洲聯盟法院(CJEU)2019年10月1日對Planet49案(Case C-673/17)作出裁決。Planet49 GmbH為線上遊戲公司,用戶必須註冊並填寫姓名、地址等資料,點擊「參加」鍵後,會出現兩個選項框,一為「同意接收贊助商及合作夥伴的廣告訊息」,用戶必須勾選此一選項始可參加;另一選項框是「同意將用戶的Cookies用於廣告目的與分析」,此一選項已被預先勾選,而用戶可以取消勾選;在選項旁附有說明(如Cookie的用途等),並告知用戶可以隨時刪除所設置的Cookie。   歐盟法院針對《電子通訊隱私指令》(ePrivacy Directive, ePD)以及《一般資料保護規則》(General Data Protection Regulation, GDPR)進行闡明,重點如下: 一、ePD所要求對於Cookie儲存與使用的「同意」必須符合GDPR的「同意」原則,必須是當事人自願、具體、知情且明確的同意,本案「預先勾選同意」不構成有效同意。 二、「同意」必須特定對象,而不能藉由其他標的加以包裝、暗示,用戶點擊「參加遊戲」不能代表「Cookie的同意」。 三、ePD是對於用戶資料儲存與取得的保護,不論是否涉及「個人資料」均有ePD的適用,而必須取得用戶同意。 四、對於Cookie的使用必須清楚揭露,包括Cookie用途、運作期間、第三方是否有機會取得此一資訊等,以確保用戶確實了解其所為「同意」的內容與範圍。

英國民航局發布航空AI監管策略三文件,以因應AI於航空領域之挑戰與機會

英國民用航空局(United Kingdom Civil Aviation Authority, CAA)於2024年12月3日發布「CAA對新興AI驅動自動化的回應」(The CAA's Response to Emerging AI-Enabled Automation)、「航空人工智慧與先進自動化監管策略」(Part A:Strategy for Regulating AI and Advanced Automation in Aerospace)以及「CAA 應用AI策略」(Part B: Strategy for Using AI in the CAA)等三份文件。首先,前者概述CAA對於AI應用於航空領域之總體立場,強調以確保安全、安保、消費者保護及環境永續等前提下,促進AI技術在相關航空領域之創新與應用;其次,「航空人工智慧與先進自動化監管策略」著重說明如何於航空領域監管AI技術之使用,以兼顧推動創新並維持安全性及穩健性;最後,「CAA 應用AI策略」則聚焦於CAA內部使用AI技術提升監管效率與決策能力的策略。 由於AI正迅速成為航空產業之重要技術,其應用範圍包含航空器、機場、地面基礎設施、空域、航太、消費者服務等,具有提高航空安全性、運作效率、環境永續性與消費者體驗之潛力。然而,相關技術風險與監管挑戰亦伴隨而至,仍需新的監管框架應對潛在風險。因此,總體而言CAA以推動AI創新技術、提升航空產業效率與永續性為目標,透過了解技術前景、建立AI通用語言,並以航空領域之五大原則為監管框架之制定核心,建立靈活的AI監管體系,維持最高水準的安全保障。五大原則及案例分述如下: (1) 安全、安保與穩健性(Safety, Security and Robustness),例如:使用AI分析航空器感測器資料進行預測維護,以利提早發現問題。 (2) 透明與可解釋性(Transparency and Explainability),例如:清楚記錄AI系統如何提出空中交通路線建議。 (3) 可質疑性與矯正機制(Contestability and Redress),例如:制定一套明確的流程,以便航空公司查詢並了解AI生成的安全建議。 (4) 公平與偏見(Fairness and Bias),例如:確保自動化旅客篩查安檢系統公平對待所有旅客。 (5) 問責與治理(Accountability and Governance),例如:明確界定AI系統在機場運營中的監管角色與職責。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}

TOP