日本國土交通省(下稱「國交省」)於2021年2月9日公布「基礎建設之數位轉型政策(インフラ分野のデジタル・トランスフォーメーション施策)」。此報告係國土交通省基礎設施DX推進本部(国土交通省インフラ分野のDX推進本部)於2021年1月所舉行第三次會議所彙整之政策方針。 針對基礎設施數位轉型之政策實施主要分為四個面向:第一部分強調透過行政程序數位化及網路化,藉以提升效率並加強管理效能,並且提供運用數位生活中各項服務,以增加生活之便利與安全。第二部分說明為實現安全與舒適之勞動環境,減少人工作業之負擔,未來欲活用AI與機器人,使施工作業與技術建設達到無人化,並透過數位化提高專業技術學習效率以培育相關人才。第三部分聚焦於調查、監督檢查領域,如公路、鐵路、河川及機場之檢修,利用資料分析與自動化機械提升日常管理及檢修效率。最後,為順利推行以上數位轉型政策,必須建構能支援數位化的社會。因此,未來除須結合智慧城市(スマートシティ)等數位創新政策,利用資料以具體化社會課題之解決方針外,亦須針對作為數位轉型基礎之3D資料進行環境整備,以利數位轉型之推動。
美國FTC正式聲明:現已將「終止給付遲延(Pay-for-Delay)藥品訴訟和解協議」列為最優先處理之反競爭事項為表明促進公平競爭及保護境內消費大眾利益之決心,美國聯邦貿易委員會(Federal Trade Commission;簡稱FTC)於今(2010)年7月27日時,正式提出一項聲明,其內容,除詳細說明其近來為促進競爭及保護境內消費大眾利益所為之各項工作外,亦正式將『終止過往於品牌藥廠與學名藥廠間所為之給付遲延訴訟和解協議』列為『最優先』處理之反競爭事項」。 根據FTC所蒐集之資料顯示,單自今年元月份起算,至今,於美國境內各大品牌藥廠及學名藥廠間所簽訂之訴訟和解協議中,已有21件藥品專利訴訟協議,因涉及以「補償金」(Compensation)來作為和解條件,而成為FTC進一步調查之對象;此外,與前一會計年度中所達成之訴訟和解協議相較,除於數量上,呈現有增無減之趨勢外;FTC方面也證實,在各方藥廠採取另一類藍海策略且不再相互為市場競爭之前提下,此類和解協議已為境內各藥品廠商減省下約90億美金之競爭成本。 而進一步觀察FTC於近期內蒐集之新資訊後顯示,除以「補償金」模式來作為達成訴訟和解協議之條件外,可能還存在著另一種形式之訴訟和解協議;亦即,於藥廠間新近所簽定訴訟和解協議中,並不必然包含由品牌藥廠為一定金額給付之項目;根據實務統計,於2010年美國會計年度前9個月內所達成之各訴訟和解協議中,確實有近75%之訴訟和解協議,於協議條件或項目上,並未包含任何有關品牌藥廠對競爭學名藥廠和解金之給付;對此,FTC表示:「從各種跡象及數據顯示,目前於各藥廠間,確已衍生出數種新型態且具潛在反競爭可能之訴訟和解協議」;故從FTC將持續致力對此類不當訴訟和解協議為反競爭調(審)查之角度來看,未來,勢必將面臨更多且更嚴苛之挑戰。 最後,Leibowitz強調:「此類不當訴訟和解協議如同正快速擴散之傳染病一般,若完全聽任其發展而不加處理,日後定有越來越多藥品之上市,將受其影響;同時,就藥品價格之決定,最終亦將與自由市場競爭機制脫鉤;如此,除將間接導致公眾近用低價藥品困難度之提升外,亦將一併造成病患長期用藥成本負擔之增加」。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
電子病歷之法源與病人隱私保護