澳洲詮釋自動駕駛「恰當駕駛」內涵

  澳洲國家交通委員會(National Transport Commission, NTC)2017年11月提出「國家自駕車實施指南(National enforcement guidelines for automated vehicles)」,協助執法單位適用目前道路駕駛法規於自駕車案例上。由於澳洲道路法規(Australian Road Rules)第297條第1項規範「駕駛者不得駕駛車輛除非其有做出恰當控制(A driver must not drive a vehicle unless the driver has proper control)」,此法規中的「恰當控制」先前被執法機關詮釋為駕駛者應坐在駕駛座上並至少有一隻手置於方向盤上。因此本指南進一步針對目前現行法規適用部分自動駕駛系統時,執法機關應如何詮釋「恰當駕駛」內涵,並確認人類駕駛於部分自動駕駛系統運作時仍應為遵循道路駕駛法規負責。

  本指南僅提供「恰當控制」之案例至SAE J2016第一級、第二級和第三級之程度,而第四級與第五級之高程度自動駕駛應不會於2020年前進入市場並合法上路,因此尚未納入本指南之詮釋範圍之中。本指南依照採取駕駛行動之對象、道路駕駛法規負責對象(誰有控制權)、是否應將一隻手放置於方向盤、是否應隨時保持警覺以採取駕駛行動、是否可於行駛中觀看其他裝置等來區分各級自動駕駛系統運作時,人類駕駛應有之恰當駕駛行為。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 澳洲詮釋自動駕駛「恰當駕駛」內涵, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7922&no=55&tp=1 (最後瀏覽日:2025/11/04)
引註此篇文章
你可能還會想看
英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

微軟將針對美國政府是否對其在都柏林之主機具有管轄權提出上訴

  在2014年4月時,美國裁決法官James Francis就聯邦檢察官的申請,依據1986年的「電子通訊隱私法」(Electronic Communications Privacy Act, “ECPA”)第2703條第a項之規定,針對微軟客戶的e-mail對微軟公司發出了搜索令。然而,該搜索令所要求的e-mail資料儲存在微軟位於愛爾蘭都柏林的資料中心,因此微軟以美國政府對於愛爾蘭並無司法管轄權為由,拒絕配合執行該搜索令,並且對發出搜索令的法官提出異議。但是Francis法官認為這並不是「域外搜索令」(extraterritorial search warrants),並指出在網路互聯的世界中,重點是對資料的控制,而不是「電子財產」的所在位置,於是拒絕了微軟的異議。   於2014年7月,微軟向紐約曼哈頓地方法院再度針對該搜索令提出異議,主張如果美國法院依據「電子通訊隱私法」要求資訊服務提供者提供位於愛爾蘭主機的客戶電子郵件資料,應透過美國與愛爾蘭政府的「多邊司法互助協定(Mutual Legal Assistance Treaty,“MLTA”)」來進行。但地方法院做出以下的裁決:1.在網路世界,電子財產之地理位置不是絕對的;2. 「電子通訊隱私法」第2703條a項所稱之搜索令並不是傳統上的搜索令,而是「搜索令」與「傳票」性質混合的命令,功能是為了讓網路服務業者(Internet Service Provider, “ISP”)提供所擁有的資料給法院;3.國會應無意透過繁瑣的「司法互助協定」來取得位於海外的電子證據;據此,地方法院維持Francis裁決法官的裁決,並且判定微軟藐視法庭。   微軟隨後在2014年12月,以地方法院使用了錯誤的法律理由、沒有根據的推斷立法目的、疏漏重要判決先例的援引、逾越國會立法的優先權並且誤解了「網路流通」的概念等理由,向美國第二巡迴法院提出上訴。   目前蘋果、AT&T、思科、Verizon以及其他科技公司都支持微軟的上訴,認為如果認可美國政府對於本國公司在境外所設置的資訊主機有司法管轄權,將會嚴重衝擊美國以外國家的資料保護法。此案目前仍在法院審理中。

RPX公司藉買進大量專利之策略,避開Patent trolls 1 之威脅

  位於舊金山的RPX公司為一積極買進大量專利為目的所成立的新創公司。該公司宣稱自己為“防禦型專利的聚集者”,計畫買進有用專利,以協助保護科技公司遭受專利流氓提出專利訴訟,進而必須付出昂貴專利權利金或授權金。   RPX公司由Kleiner Perkins Caufield & Byers 及Charles Rivers Ventures兩家創投公司共同籌措資金而成立,其執行長為John Amster及Geoffrey Barker,兩位先前皆為另一專門購買專利之企業 Intellectual Ventures的副總裁。   RPX將採會員制方式,依公司營業收入的情況,每年收取固定3萬5千美元到 4百9拾萬美元的費用。會員將可依公司營運需求取得RPX之專利授權。2008年11月The Wall Street Journal 2 刊登出Cisco Systems與IBM已成為RPX的會員成員之一。   RPX公司稱已獲得150件美國專利,並另已提交申請60件美國專利,總價值共4仟萬美元,其領域包括網際網路搜尋(Internet search),無線射頻身分識別(radio frequency identification),以及行動技術(mobile technology)。 註1:Patent trolls(專利流氓) 為握有專利但不運用於公司之製造或銷售產品,而是透過專利授權而取得權利金或若不接受專利授權者,藉由提出專利訴訟而取得損害賠償金之公司。 註2:The Wall Street Journal為提供財政、商業及經濟等相關消息之報紙全文。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP