澳洲詮釋自動駕駛「恰當駕駛」內涵

  澳洲國家交通委員會(National Transport Commission, NTC)2017年11月提出「國家自駕車實施指南(National enforcement guidelines for automated vehicles)」,協助執法單位適用目前道路駕駛法規於自駕車案例上。由於澳洲道路法規(Australian Road Rules)第297條第1項規範「駕駛者不得駕駛車輛除非其有做出恰當控制(A driver must not drive a vehicle unless the driver has proper control)」,此法規中的「恰當控制」先前被執法機關詮釋為駕駛者應坐在駕駛座上並至少有一隻手置於方向盤上。因此本指南進一步針對目前現行法規適用部分自動駕駛系統時,執法機關應如何詮釋「恰當駕駛」內涵,並確認人類駕駛於部分自動駕駛系統運作時仍應為遵循道路駕駛法規負責。

  本指南僅提供「恰當控制」之案例至SAE J2016第一級、第二級和第三級之程度,而第四級與第五級之高程度自動駕駛應不會於2020年前進入市場並合法上路,因此尚未納入本指南之詮釋範圍之中。本指南依照採取駕駛行動之對象、道路駕駛法規負責對象(誰有控制權)、是否應將一隻手放置於方向盤、是否應隨時保持警覺以採取駕駛行動、是否可於行駛中觀看其他裝置等來區分各級自動駕駛系統運作時,人類駕駛應有之恰當駕駛行為。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 澳洲詮釋自動駕駛「恰當駕駛」內涵, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7922&no=64&tp=5 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
數位基礎建設的挑戰與未來-以歐盟「如何掌握歐洲的數位基礎建設需求?」白皮書為中心

數位建設在數位化浪潮以及AI來臨的年代,顯得非常重要,也是世界各國重視的議題之一,歐盟於2024年2月提出了「如何掌握歐洲的數位基礎建設需求?」(WHITE PAPER How to master Europe's digital infrastructure needs?)白皮書來匯集專家意見至6月30日止。 數位基礎建設所涵範圍甚廣,包含資訊科技所有的技術系統以及網際網路等等。如果沒有這些建設,將無法順利完成數位轉型及提升競爭力,況且人工智慧以及物聯網時代的到來,正在改變全球消費者的習慣,因此落實數位基礎建設佈建具有相當之必要性。白皮書開門見山地提到數位基礎建設的諸多優點,但要完成目標,需克服許多難題。 數位基礎建設的佈建需投入大量資金,更需仰賴公私協力才可順利達標,因此難題主要圍繞在企業實力以及是否能夠有相當之吸引力,促使企業投資者以龐大的金流支援,而企業投資者之目標以獲利為原則,因此如果要吸引大量投資人進場,必須提出成功施行並獲利的案例來拋磚引玉。白皮書內也提到,歐洲境內固網行動匯流尤其光纖及5G網路覆蓋率較世界各國來的低,且歐盟因為成員國眾多,缺乏單一的市場,難統籌規範,更何況歐盟對於複雜的數位基礎建設生態中,針對參與者沒有明確規範,諸如投入電子通訊網路建置之雲端供應商其權利義務關係,使得參與者無所適從,如何去克服這些絆腳石將會是歐盟的重大挑戰。 為克服數位基礎建設的難題,白皮書建議以三個支柱作為框架,其一為打造共同連結的運算網路系統(Connected Collaborative Computing)作為歐盟經濟體的中樞神經;其二為建立單一的數位市場,整合各國市場機制並建立完善法規制度;最後為所有數位基礎建設須安全且富有韌性,否則遭到攻擊,將會威脅歐盟各國。 數位化的時代,不僅可提提升運作效能,更能促進永續發展,然而工欲善其事,必先利其器,數位基礎建設為不可少之一環,鑒於我國推動數位建設佈建也可能面臨投資誘因的難題,歐盟白皮書所提到的建議以及後續的發展,或許值得我國持續關注。

美國國際貿易委員會(USITC)發布「全球數位貿易報告,推動數位經濟新機會」

政府採購雲端服務新興模式暨資安一體考量之研析

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

TOP