日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面

  設置於內閣府內之SIP(跨部會戰略創新推動方案Cross-ministerial Strategic Innovation Promotion Program)「自動駕駛系統」計畫分項,於2017年10月3日起啟動大規模之自動駕駛實證測試。為加速實現系統之實用化,超過20個以上之國內外汽車製造商等機關,預計於東名高速道路、新東名高速道路、首都高速道路及常磐自動車道及東京臨海地區之一般道路,參加之大規模實證實驗。

  SIP自動駕駛系統係從2013年開始,以早日實現自動駕駛系統實用化、透過技術普及以減少交通事故和實現次世代交通系統為目標,並協調產官學各界共同領域工作,和將研究開發推進之重點聚焦於自動駕駛用 Dynamic Map高精度3D地圖(由日本7家相關公司共同出資成立之Dynamic Map Platform= DMP 開發之3D地圖)、人機界面 (Human Machine Interface, HMI)、資訊安全、降低行人事故、次世代都市交通等5種技術領域。

  研究開發由汽車製造商於公開場合下進行,並接受大眾檢視,於研究開發成果公布同時,也因海外製造商的參與促進國際合作與國際標準化。本次有超過20個機關參加規模,係日本自動駕駛最大規模實證實驗。

本文為「經濟部產業技術司科技專案成果」

※ 日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7931&no=55&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
歐盟如何打擊「非現金支付」詐欺?

  有鑑於「非現金支付」(non-cash payment)──包含信用卡、電子錢包、行動支付和虛擬貨幣──之詐欺犯罪率有增加之趨勢,歐洲議會公民、司法與內政委員會 (Committee on Civil Liberties, Justice and Home Affairs)於2018年9月3日批准一修正草案,更新2001年通過之理事會框架決定(Council Framework Decision)2001/413/JHA,提高非現金支付詐欺之刑責,同時強化被害人保護。此一修正草案旨在消弭歐盟成員國間之法律落差,以強化對非現金支付詐欺之預防、偵查及懲罰。   此一草案最重要者為將虛擬貨幣交易納入犯罪之構成要件,並提高刑責。如法官認定犯罪情節該當國內非現金支付詐欺最重之罪,則最低應處以三至五年之有期徒刑。而其他新增及修正之內容包含: 改善歐盟區域內之合作,以利跨境詐欺之訴追。 強化對犯罪被害人之援助,如心理支持、財務及法律問題之諮詢,並對缺乏足夠資源者提供免費法律扶助。 透過宣導、教育與網路資源(如詐欺之實際案例)提供,提升民眾認知及預防之意識。   於委員會投票批准修正草案後,其後將待歐洲議會通過,並與歐盟理事會開啟非正式對談。

淺談攻擊性商標

  對於商標權之內容是否涉及對特定人士的產生不快或冒犯,以及國家是否有權禁止其註冊為商標之問題,我國法係在商標法第30條第1項第7款中規定,商標妨害公共秩序或善良風俗者,不得註冊;並經由經濟部智慧財產局訂定「商標妨害公共秩序或善良風俗審查基準」,建立認定準則,並認為應「考量註冊當時之社會環境,並就其指定使用商品或服務市場之情況、相關公眾之認知等因素綜合判斷」。   而在美國法中,亦有 Lee v. Tam一案,針對美國專利商標局 (United States Patent and Trademark Office, USPTO)是否有權依照 The Lanham Act第2條a款規定駁回商標申請的權利進行爭執,該條規定「包含不道德、欺騙、誹謗性、貶損或誤導他人(不論生死)、組織、信仰或國家象徵等意涵、或導致前者名譽受損之圖案,不可註冊為商標」。   該案在2015年12月22日於美國聯邦巡迴上訴法院進行判決,法院認為,儘管是具攻擊性的歧視言論,亦受到美國聯邦憲法第一修正案所保障,故美國政府不得以商標圖案的言論內容具攻擊性為理由,拒絕商標的註冊。本案經上訴於美國聯邦最高法院,最高法院於2016年9月29日已經同意其提起上訴,將對本案進行審理。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

從推動體系及法制架構思考我國文化創意產業發展之整合以南韓推動組織與法制架構為例

TOP