美國專利商標局(USPTO)與歐洲專利局(EPO)簽署協議,合作開發「以歐洲專利分類系統為基礎,並納入兩局分類實務特點」的共同分類系統:「合作專利分類」(Cooperative Patent Classification, CPC)系統,該系統為全球性的專利文件分類系統。USPTO與EPO為促進專利調合化,積極努力並共同合作建立CPC系統,該系統結合了兩局最好的分類作法,為專利技術文件建立一個共同且為國際間相容的分類系統,供專利審查使用。CPC於2013年1月1日宣布正式啟用,EPO開始使用CPC,不再使用歐洲專利分類(ECLA);2015年1月1日,USPTO正式宣告成功由美國專利分類(USPC)轉換至CPC。目前已有超過45個專利局與超過 25,000名審查人員使用CPC作為檢索工具,使CPC成為國際性的分類標準。
本文為「經濟部產業技術司科技專案成果」
2018年12月1日,加拿大智慧財產局公告了新專利法,並立2018年12月1日起至31日為公衆諮詢期,該法於2019年正式生效。 本次專利法修改多屬鬆綁權利人之期日限制,包括: 恢復優先權主張:在新專利法上路後,在非故意錯過了12個月的優先權期限的情況下,可允許將優先權期限延長至14個月; 更容易取得申請日:針對直接申請加拿大專利而非透過專利合作條約(Patent Cooperation Treaty,PCT)的申請案,即使尚未繳納申請費,或是相關申請文件非英文和法文,一樣可以取得申請日; 允許補交在主張優先權申請遺漏的內容; 獲核准通知後提出修改作業的程序順暢化; 採用電子送件,排序列表不會被徵收超頁費; 對特定的錯誤有更明確的修正截止日:移除因「行政作業」上疏失而提出修正請求的規定,在其他規定上增加了明確的截止日; 採PCT途徑進入國家階段已經不再有42個月的期限; 維持費用制度較為複雜,錯過實質審查期限影響也較嚴重; 如果已遞交之申請案並非英文或法文版本,那未來修改申請案必須要能自合理的從原本外語版本中合理推論而出; 需提出優先權證明文件:申請人必須向加拿大專利局遞交每一件先前申請的優先權證明文件,特殊情況下才能豁免提交; 部分申請期限變短:新專利制度縮短申請人部分申請程序及時間,例如申請實體審查期限從申請日起5年內降為4年等。
IEA報告對合乎能源效率的建築外殼提供政策建議 Apple , AT&T解決有關iPhone的專利訴訟Klausner Technologies已結束2007年12月針對蘋果(Apple)與共同合作AT&T公司發起的專利訴訟案,並將專利技術以授權方式予Apple及AT&T。 Klausner Technologies具有視覺語音郵件(visual voice-mail)技術所衍生產品與服務,並在美國及其他國家申請並已獲得多項專利。Klausner Technologies認為Apple 所生產iPhone手機的觸摸屏介面設計,其視覺語音郵件功能,類似像電子郵件收發匣,可呈現所有已接收的語音郵件,並可讓使用者依個人喜好隨意指定郵件的排列順序與瀏覽方式,其功能與Klausner Technologies於2004-2006年間所申請專利技術雷同。故2007年底對Apple與AT&T發出專利訴訟,並請求3億6仟萬美元的賠償與預期未來使用權利金。本案最終在美國德州東區地方法院以和解方式結束,然而和解相關詳情尚未對外公布。 Klausner Technologies於控告Apple與AT&T前,已經與數家公司簽署視覺語音郵件技術授權合約,包括時代華納的AOL與VoIP網路提供商Aonage公司;亦對Comcast,Cablevision及eBay等三家公司提起訴訟,指出其VoIP產品,侵犯Klausner Technologies所申請關語音郵件的專利,並請求賠償與使用權利費用共計3億美元。依路透社報導,eBay已同意接受以授權方式取得語音郵件技術。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現