何謂「LAB- FAB - APP- Investing in the European future we want」?

  歐盟執委會研究創新總署之高級專家小組(High Level Group)2017年7月3日提交名為《研究、生產、應用—投資於我們所期待的歐洲未來》(LAB- FAB - APP- Investing in the European future we want)報告,呼籲歐盟及成員國大幅增加對研發創新的投入。該報告認為過去20年,工業化國家2/3的經濟增長歸功於研發創新。歐洲必須妥善利用大量知識,將創新潛力轉化為現實的經濟增長,從而促進歐洲繁榮,解決社會挑戰。該報告提出11項建議:(1)將歐盟及成員國的預算優先考慮投入研發創新,將下一個歐盟研發創新計畫的預算提高一倍;(2)建立可創造未來市場的歐盟創新政策;(3)投入未來教育培訓,投資創新人才;(4)編制能夠發揮更大影響力的歐盟研發創新計畫,堅持目標、完善評估系統以增加計畫靈活度;(5)採取任務導向、焦點式措施應對全球挑戰;(6)使歐盟資金分配更加合理,實現與歐盟結構性基金的協同效應;(7)進一步簡化計畫管理模式,更注重效果而不是過程;(8)激勵公眾參與創新;(9)更好地促進歐盟及成員國的研發創新投資合作;(10)使國際合作成為歐盟研發創新的特徵,通過共同資助等方式,開放歐盟研發創新計畫;(11)將歐盟研發創新品牌化,擴大研究創新成果及作用。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「LAB- FAB - APP- Investing in the European future we want」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7941&no=64&tp=5 (最後瀏覽日:2026/01/10)
引註此篇文章
你可能還會想看
美國公布「2050淨零排放之路:美國長期策略」

  美國於2021年11月1日公布「2050淨零排放之路:美國長期策略」(The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050),確立美國未來十年溫室氣體減量發展方向,希望透過聯邦政府與各州、地方政府間合作,並結合社會整體力量,使美國可以在2050年實現淨零排放,並支持更加永續、具彈性且平等的經濟發展,實現完全的零碳污染、強化經濟及提升大眾健康。   本報告首先強調從現在開始至2030年約十年間溫室氣體排放減量的重要性,並說明美國接下來將以溫室氣體排放減量,作為未來達成淨零排放目標之基礎。為了達成淨零排放,美國計畫自能源、產業的排放結構著手推動轉型,報告中公布五項具體目標: 電力脫碳化:近年來因為風力及太陽能等潔淨能源發電成本急遽降低,能源轉型的腳步也逐漸加快,在此基礎上,美國訂定2035年達到100%潔淨電能的目標,並預計電力部門可於2050年以前達到真正的淨零排放。 電動化或轉換為潔淨能源:推動各部門電動化,使交通、建築物及工業製程可以使用合理成本且具一定效率的電力作為主要能源;針對航空、海運及部分工業製程等以現行科技水準較難實現電動化的經濟活動,則推動轉換為氫能、永續生質能等較潔淨的燃料。 減少能源浪費:透過新技術的開發,提升能源使用效率,例如於新建建築物使用能源效率較優的設備、更新既有建物之設備、改善工業製程的能源效率等。 降低甲烷等非二氧化碳溫室氣體排放:採取適當措施以減少甲烷、氫氟碳化合物、氮氧化物等非二氧化碳溫室氣體之排放,包括於石油及天然氣系統加裝甲烷洩漏感測器,以監控其洩漏狀態,以及將冷卻設備中的制冷劑從氫氟碳化合物更換為環境友善的其他物質。 移除大氣中二氧化碳:增加自然碳匯,或以目前可實際運用的技術吸收大氣中的二氧化碳。   美國預計結合聯邦、地方政府,以及產業、學術機構、投資人等社會各界,透過政策執行,強化推動能源、運輸、土地利用等經濟活動的溫室氣體減量工作;同時,配合資金導入,支持並給予各部門足夠的誘因投入潔淨技術的開發,並透過合作,以減少技術開發時可能遭遇的障礙及付出的成本,帶動美國整體朝淨零目標邁進。

日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。   新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。   新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

加州立法機關提出2020年加州消費者隱私法修正案,擴大對未成年消費者個人資料之保護

2024年1月29日,加州立法機關提出2020年加州消費者隱私法(California Consumer Privacy Act of 2020)之修正案,限制企業出售、分享、使用及揭露18歲以下消費者的個人資料。 2020年加州消費者隱私法旨在保護消費者之個人資料相關權利。依現行條文,企業向第三方出售、分享消費者個資前,應向消費者發出通知。而消費者有權拒絕出售、分享其個資,即便消費者曾經同意,亦有權隨時要求企業停止出售、分享行為。現行條文尚禁止企業在明知消費者未滿16歲的情況下,出售或分享消費者個資。除非年滿13歲消費者本人授權,或未滿13歲消費者父母授權,企業方可為之。 然該法修正案調整了前述條文,改為禁止企業在明知消費者未滿18歲的情況下,出售或分享消費者個資,除非企業取得年滿13歲消費者本人之授權,或取得13歲以下消費者父母之授權。 加州消費者隱私法修正案亦針對未成年人個資的使用與揭露增設限制。依現行條文,消費者有權限制企業只能在提供商品、服務的必要範圍內使用其敏感個資。若企業欲對敏感個資為原定目的外之使用或揭露、或敏感個資可能被用於或揭露予第三方,企業應向消費者發出通知。而消費者有權限制或拒絕企業之使用、揭露行為。而後該法修正案在同條增加未成年人個資使用、揭露相關規範,規範企業不得使用、揭露18歲以下消費者個資。除非年滿13歲消費者本人同意,或是未滿13歲消費者父母同意企業為之。 若修正案通過,再配合現行條文於行政執行(Administrative Enforcement)章節之處罰規定,將能有效擴大該法對未成年人的保護。該修正案亦以條文要求加州隱私保護局(California Privacy Protection Agency)在2025年7月1日前,廣泛徵求公眾意見並調整相應法規,以進一步實現該法目的。

解析雲端運算有關認驗證機制與資安標準發展

解析雲端運算有關認驗證機制與資安標準發展 科技法律研究所 2013年12月04日 壹、前言   2013上半年度報載「新北市成為全球首個雲端安全認證之政府機構」[1],新北市政府獲得國際組織雲端安全聯盟( Cloud Security Alliance, CSA )評定為全球第一個通過「雲端安全開放式認證架構」之政府機構,獲頒「2013雲端安全耀星獎」(2013 Cloud Security STAR Award),該獎項一向是頒發給在雲端運用與安全上具有重要貢獻及示範作用之國際企業,今年度除了頒發給旗下擁有年營業額高達1200億台幣「淘寶網」的阿里巴巴集團外,首度將獎項頒發給政府組織。究竟何謂雲端認證,其背景、精神與機制運作為何?本文以雲端運算相關資訊安全標準的推動為主題,並介紹幾個具有指標性的驗證機制,以使讀者能瞭解雲端運算環境中的資安議題及相關機制的運作。   資訊安全向來是雲端運算服務中最重要的議題之一,各國推展雲端運算產業之際,會以提出指引或指導原則方式作為參考基準,讓產業有相關的資訊安全依循標準。另一方面,相關的產業團體也會進行促成資訊安全標準形成的活動,直至資訊安全相關作法或基準的討論成熟之後,則可能研提至國際組織討論制定相關標準。 貳、雲端運算資訊安全之控制依循   雲端運算的資訊安全風險,可從政策與組織、技術與法律層面來觀察[2],涉及層面相當廣泛,包括雲端使用者實質控制能力的弱化、雲端服務資訊格式與平台未互通所導致的閉鎖效應(Lock-in)、以及雲端服務提供者內部控管不善…等,都是可能發生的實質資安問題 。   在雲端運算產業甫推動之初,各先進國以提出指引的方式,作為產業輔導的基礎,並強化使用者對雲端運算的基本認知,並以「分析雲端運算特色及特有風險」及「尋求適於雲端運算的資訊安全標準」為重心。 一、ENISA「資訊安全確保架構」[3]   歐盟網路與資訊安全機關(European Network and Information Security Agency, ENISA)於2009年提出「資訊安全確保架構」,以ISO 27001/2與BS25999標準、及最佳實務運作原則為參考基準,參考之依據主要是與雲端運算服務提供者及受委託第三方(Third party outsourcers)有關之控制項。其後也會再參考其他的標準如SP800-53,試圖提出更完善的資訊安全確保架構。   值得注意的是,其對於雲端服務提供者與使用者之間的法律上的責任分配(Division of Liability)有詳細說明:在資訊內容合法性部分,尤其是在資訊內容有無取得合法授權,應由載入或輸入資訊的使用者全權負責;而雲端服務提供者得依法律規定主張責任免除。而當法律課與保護特定資訊的義務時,例如個人資料保護相關規範,基本上應由使用者與服務提供者分別對其可得控制部分,進行適當的謹慎性調查(Due Diligence, DD)[4]。   雲端環境中服務提供者與使用者雙方得以實質掌握的資訊層,則決定了各自應負責的範圍與界限。   在IaaS(Infrastructure as a Service)模式中,就雲端環境中服務提供者與使用者雙方應負責之項目,服務提供者無從知悉在使用者虛擬實體(Virtual Instance)中運作的應用程式(Application)。應用程式、平台及在服務提供者基礎架構上的虛擬伺服器,概由使用者所完全主控,因此使用者必須負責保護所佈署的應用程式之安全性。實務上的情形則多由服務提供者協助或指導關於資訊安全保護的方式與步驟[5]。   在PaaS(Platform as a Service)模式中,通常由雲端服務提供者負責平台軟體層(Platform Software Stack)的資訊安全,相對而言,便使得使用者難以知悉其所採行的資訊安全措施。   在SaaS(Software as a Service)模式中,雲端服務提供者所能掌控的資訊層已包含至提供予使用者所使用的應用程式(Entire Suite of Application),因此該等應用程式之資訊安全通常由服務提供者所負責。此時,使用者應瞭解服務提供者提供哪些管理控制功能、存取權限,且該存取權限控制有無客製化的選項。 二、CSA「雲端資訊安全控制架構」[6]   CSA於2010年提出「雲端資訊安全控制架構」(Cloud Controls Matrix, CCM),目的在於指導服務提供者關於資訊安全的基礎原則、同時讓使用者可以有評估服務提供者整體資訊安全風險的依循。此「雲端資訊安全控制架構」,係依循CSA另一份指引「雲端運算關鍵領域指引第二版」[7]中的十三個領域(Domain)而來,著重於雲端運算架構本身、雲端環境中之治理、雲端環境中之操作。另外CCM亦將其控制項與其他與特定產業相關的資訊安全要求加以對照,例如COBIT與PCI DSS等資訊安全標準[8]。在雲端運算之國際標準尚未正式出爐之前,CSA提出的CCM,十分完整而具備豐富的參考價值。   舉例而言,資訊治理(Data Governance)控制目標中,就資訊之委託關係(Stewardship),即要求應由雲端服務提供者來確認其委託的責任與形式。在回復力(Resiliency)控制目標中,要求服務提供者與使用者雙方皆應備置管理計畫(Management Program),應有與業務繼續性與災害復原相關的政策、方法與流程,以將損害發生所造成的危害控制在可接受的範圍內,且回復力管理計畫亦應使相關的組織知悉,以使能在事故發生時即時因應。 三、日本經產省「運用雲端服務之資訊安全管理指導原則」[9]   日本經濟產業省於2011年提出「運用雲端服務之資訊安全管理指導原則」,此指導原則之目的是期待藉由資訊安全管理以及資訊安全監督,來強化服務提供者與使用者間的信賴關係。本指導原則的適用範圍,主要是針對機關、組織內部核心資訊資產而委託由外部雲端服務提供者進行處理或管理之情形,其資訊安全的管理議題;其指導原則之依據是以JISQ27002(日本的國家標準)作為基礎,再就雲端運算的特性設想出最理想的資訊環境、責任配置等。   舉例而言,在JISQ27002中關於資訊備份(Backup)之規定,為資訊以及軟體(Software)應遵循ㄧ定的備份方針,並能定期取得與進行演練;意即備份之目的在於讓重要的資料與軟體,能在災害或設備故障發生之後確實復原,因此應有適當可資備份之設施,並應考量將備份措施與程度的明確化、備份範圍與頻率能符合組織對於業務繼續性的需求、且對於儲存備份資料之儲存媒體亦應有妥善的管理措施、並應定期實施演練以確認復原程序之有效與效率。對照於雲端運算環境,使用者應主動確認雲端環境中所處理之資訊、軟體或軟體設定其備份的必要性;而雲端服務提供者亦應提供使用者關於備份方法的相關訊息[10]。 参、針對雲端運算之認證與登錄機制 一、CSA雲端安全知識認證   CSA所推出的「雲端安全知識認證」(Certificate of Cloud Security Knowledge, CCSK),是全球第一張雲端安全知識認證,用以表示通過測驗的人員對於雲端運算具備特定領域的知識,並不代表該人員通過專業資格驗證(Accreditation);此認證不能用來代替其他與資訊安全稽核或治理領域的相關認證[11]。CSA與歐盟ENISA合作進行此認證機制的發展,因此認證主要的測試內容是依據CSA的「CSA雲端運算關鍵領域指引2.1版(英文版)」與ENISA「雲端運算優勢、風險與資訊安全建議」這兩份文件。此兩份文件採用較為概略的觀念指導方式,供讀者得以認知如何評估雲端運算可能產生的資訊安全風險,並採取可能的因應措施。 二、CSA雲端安全登錄機制   由CSA所推出的「雲端安全登錄」機制(CSA Security, Trust & Assurance Registry, STAR),設置一開放網站平台,採取鼓勵雲端服務提供者自主自願登錄的方式,就其提供雲端服務之資訊安全措施進行自我評估(Self Assessment),並宣示已遵循CSA的最佳實務(Best Practices);登錄的雲端服務提供者可透過下述兩種方式提出報告,以表示其遵循狀態。   (一)認知評價計畫(Consensus Assessments Initiative)[12]:此計畫以產業實務可接受的方式模擬使用者可能之提問,再由服務提供者針對這些模擬提問來回答(提問內容在IaaS、PaaS與SaaS服務模式中有所不同),藉此,由服務提供者完整揭示使用者所關心的資訊安全議題。   (二)雲端資訊安全控制架構(CCM):由服務提供者依循CCM的資訊安全控制項目及其指導,實踐相關的政策、措施或程序,再揭示其遵循報告。   資安事故的確實可能使政府機關蒙受莫大損失,美國南卡羅萊納州稅務局(South Carolina Department of Revenue)2012年發生駭客攻擊事件,州政府花費約2000萬美元收拾殘局,其中1200萬美元用來作為市民身份被竊後的信用活動監控,其他則用來發送被害通知、資安強化措施、及建立數位鑑識團隊、資安顧問。   另一方面,使用者也可以到此平台審閱服務提供者的資訊安全措施,促進使用者實施謹慎性調查(Due Diligence)的便利性並累積較好的採購經驗。 三、日本-安全・信頼性資訊開示認定制度   由日本一般財團法人多媒體振興協會(一般財団法人マルチメディア振興センター)所建置的資訊公開驗證制度[13](安全・信頼性に係る情報開示認定制度),提出一套有關服務提供者從事雲端服務應公開之資訊的標準,要求有意申請驗證的業者需依標準揭示特定項目資訊,並由認證機關審查其揭示資訊真偽與否,若審查結果通過,將發予「證書」與「驗證標章」。   此機制始於2008年,主要針對ASP與SaaS業者,至2012年8月已擴大實施至IaaS業者、PaaS業者與資料中心業者。 肆、雲端運算資訊安全國際標準之形成   現國際標準化組織(International Organization for Standardization, ISO)目前正研擬有關雲端運算領域的資訊安全標準。ISO/IEC 27017(草案)[14]係針對雲端運算之資訊安全要素的指導規範,而ISO/IEC 27018(草案)[15]則特別針對雲端運算的隱私議題,尤其是個人資料保護;兩者皆根基於ISO/IEC 27002的標準之上,再依據雲端運算的特色加入相應的控制目標(Control Objectives)。 [1]http://www.ntpc.gov.tw/web/News?command=showDetail&postId=277657 (最後瀏覽日:2013/11/20) [2]European Network and Information Security Agency [ENISA], Cloud Computing: Benefits, Risks and Recommendations for Information Security 53-59 (2009). [3]ENISA, Cloud Computing-Information Assurance Framework (2009), available at http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-information-assurance-framework . [4]ENISA, Cloud Computing-Information Assurance Framework 7-8 (2009). [5]ENISA, Cloud Computing-Information Assurance Framework 10 (2009). [6]CSA, Cloud Controls Matrix (2011), https://cloudsecurityalliance.org/research/ccm/ (last visited Nov. 20, 2013). [7]CSA, CSA Guidance For Critical Areas of Focus in Cloud Computing v2 (2009), available at https://cloudsecurityalliance.org/research/security-guidance/#_v2. (last visited Nov. 20, 2013). [8]https://cloudsecurityalliance.org/research/ccm/ (last visited Nov. 20, 2013). [9]日本経済産業省,クラウドサービスの利用のための情報セキュリティマネジメントガイドライン(2011),http://www.meti.go.jp/press/2011/04/20110401001/20110401001.html,(最後瀏覽日:2013/11/20)。 [10]日本経済産業省,〈クラウドサービスの利用のための情報セキュリティマネジメントガイドライン〉,頁36(2011)年。 [11]https://cloudsecurityalliance.org/education/ccsk/faq/(最後瀏覽日:2013/11/20)。 [12]https://cloudsecurityalliance.org/research/cai/ (最後瀏覽日:2013/11/20)。 [13]http://www.fmmc.or.jp/asp-nintei/index.html (最後瀏覽日:2013/11/20)。 [14]Information technology - Security techniques- Security in cloud computing (DRAFT), http://www.iso27001security.com/html/27017.html (last visited Nov. 20, 2013). [15]ISO/IEC 27018- Information technology -Security techniques -Code of practice for data protection, controls for public cloud computing services (DRAFT), http://www.iso27001security.com/html/27018.html (last visited Nov. 20, 2013).

TOP