Connected Industries為日本產業的未來願景,透過人、機器與科技的跨界連接,創造出全新附加價值的產業社會,以達到Society5.0理想目標。例如,物與物的連接形成物聯網(IoT)、人與機器合作拓展智慧與創新、跨國企業合作解決全球議題、跨世代的人與人連繫傳承智慧與技術、生產者與消費者接觸解決商業與社會問題等。
隨著第四次產業革命到來,IoT、大數據及 AI人工製會等技術革新,日本藉由高科技、技術人才及應變能力等優勢與數據技術相結合,目標是邁向以人類為中心、解決問題的新產業社會。Connected Industries的三大支柱分別為:
一、新數據社會(New Digital Society)
消除人與機械系統的對立,實現全新的數位化社會。解決新興科學技術如AI及機器人運用上的困難,並積極活用該技術幫助並強化人類解決問題的能力。
二、多層次合作(Multilevel Cooperation)
區域、世界及全球未來面臨複雜的挑戰,必須透過企業間、產業間及國與國間的連繫合作解決課題。
三、人力資源發展(Human Resource Development)
以人類為中心做思考,積極推展數據技術的人才養成,邁向智慧與技術的數據化時代。
本文為「經濟部產業技術司科技專案成果」
日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。 新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。 新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。
印度政府公告個人資料保護法草案2018年7月27日印度電子及資訊科技部(Ministry of Electronics and Information Technology, MeitY)公告個人資料保護法草案(Protection of Personal Data Bill),若施行將成為印度首部個人資料保護專法。 其立法背景主要可追溯2017年8月24日印度最高法院之判決,由於印度政府立法規範名為Aadhaar之全國性身分辨識系統,能夠依法強制蒐集國民之指紋及虹膜等生物辨識,國民在進行退稅、社會補助、使用福利措施等行為時都必須提供其個人生物辨識資料,因此遭到人權團體控訴侵害隱私權。最高法院最後以隱私權為印度憲法第21條「個人享有決定生活與自由權利」之保護內涵,進而認為國民有資料自主權,能決定個人資料應如何被蒐集、處理與利用而不被他人任意侵害,因此認定Aadhaar專法與相關法律違憲,政府應有義務提出個人資料專法以保護國民之個人資料。此判決結果迫使印度政府成立由前最高法院BN Srikrishna法官所領導之專家委員會,研擬個人資料保護法草案。 草案全文共112條,分為15章節。主要重點架構說明如下: 設立個資保護專責機構(Data Protection Authority of India, DPAI):規範於草案第49至68條,隸屬於中央政府並由16名委員所組成之委員會性質,具有獨立調查權以及行政檢查權力。 對於敏感個人資料(Sensitive personal data)[1]之特別保護:草案在第4章與第5章兩章節,規範個人與兒童之敏感個人資料保護。其中草案第18條規定蒐集、處理與利用敏感個人資料前,必須獲得資料主體者(Data principal)之明確同意(Explicit consent)。而明確同意是指,取得資料主體者同意前,應具體且明確告知使用其敏感個人資料之目的、範圍、操作與處理方式,以及可能對資料主體者產生之影響。 明確資料主體者之權利:規範於草案第24至28條,原則上資料主體者擁有確認與近用權(Right to confirmation and access)、更正權(Right to correction)、資料可攜權(Right to data portability)及被遺忘權(Right to be forgotten)等權利。 導入隱私保護設計(Privacy by design)概念:規範於草案第29條,資料保有者(Data fiduciary)應採取措施,確保處理個人資料所用之技術符合商業認可或認證標準,從蒐集到刪除資料過程皆應透明並保護隱私,同時所有組織管理、業務執行與設備技術等設計皆是可預測,以避免對資料主體者造成損害等。 指派(Appoint)資料保護專員(Data protection officer):散見於草案第36條等,處理個人資料為主之機構、組織皆須指派資料保護專員,負責進行資料保護影響評估(Data Protection Impact Assessment, DPIA),洩漏通知以及監控資料處理等作業。 資料保存之限制(Data storage limitation):規範於草案第10條與第40條等,資料保有者只能在合理期間內保存個人資料,同時應確保個人資料只能保存於本國內,即資料在地化限制。 違反草案規定處高額罰金與刑罰:規範於草案第69條以下,資料保有者若違反相關規定,依情節會處以5億至15億盧比(INR)或是上一年度全球營業總額2%-4%罰金以及依據相關刑事法處罰。 [1]對於敏感個人資料之定義,草案第3-35條規定,包含財務資料、密碼、身分證號碼、性生活、性取向、生物辨識資料、遺傳資料、跨性別身分(transgender status)、雙性人身分(intersex status)、種族、宗教或政治信仰,以及與資料主體者現在、過去或未來相連結之身體或精神健康狀態的健康資料(health data)。
美國環保署於提出首部「限制發電廠有毒氣體排放」國家管制標準草案並預定於2011年11月完成立法美國環保署(Environmental Protection Agency of the United States,以下簡稱EPA)於2011年3月16日首度對於國內發電廠有毒氣體的排放提出國家管制標準草案,並預定於2011年11月完成立法,此項立法措施被譽為近20年來美國空氣污染防治史上的重要里程碑。 美國對於發電廠所排放的有害氣體管制,最早源於美國清淨空氣法案(The Clean Air Act)在1990年要求EPA加強對於發電廠排放之汞(mercury)等有毒氣體之管制,而國會亦要求其須於2004年底以前提出國家管制標準。然而EPA於2005年正式公告「清靜空氣除汞管制規則(the Clean Air Mercury Rule,以下簡稱CAMR規則)」時,卻將燃煤電廠排放汞排除於管制名單外,引發紐澤西等14個州政府與相關環保團體的抗議,並對EPA提起聯邦訴訟。2008年2月8日聯邦上訴法院作出判決,除指出EPA對於發電廠空污之認定前後矛盾外,更認定其在未發現有新事證下擅自將發電廠所排放之空氣污染自CAMR管制名單中移除(delist),已違背反清靜空氣法案之程序要求,故推翻CAMR規則之有效性。 此後,經過密集的聽證會與討論,EPA最終於2011年3月16日正式提出「限制發電廠有毒氣體排放」的國家管制標準,對於發電廠所排放的汞、砷(arsenic)、鉻(chromium)、鎳(nickel)及其他酸性或有毒氣體加以管制,並要求電廠必須採用污染控制技術以減少製造量。 後京都議定書時代中,各國無不致力於新興能源替代方案之提出,惟於新興能源研發應用前的過渡期間仍需仰賴傳統發電技術,美國為解決傳統火力發電對於環境及人體健康所造成的傷害,提出首部國家管制標準草案,其後續對於該國能源結構可能產生何種影響,值得注意。
美國國家標準與技術研究院「隱私框架1.0版」美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。 NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。 本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。