何謂「Sitra」?

  芬蘭創新研究發展基金(Finnish Innovation Fund, Sitra) 成立於1967年,是由芬蘭國會直接監督及管理的獨立性公共部門,為芬蘭第一個以科技為主旨的創業投資基金。Sitra設立主要目的是提供對創新企業或風險性專案提供無償資助或貸款,專門研究如何在芬蘭全方位各領域以創新帶動社會發展,使其在國際市場更具競爭力。Sitra為初創公司提供所需資金的15%到40%,待支持的項目成功後,獲取的回報即可再用於擴大投資,創造正向循環的投資環境。與芬蘭國家技術創新局(Tekes)相比,Sitra主要投資於公司和創業公司以創造有利可圖的新興業務;而Tekes為芬蘭經濟及就業部之一部分,主要資助大學、研究單位或私人公司進行科技研發,是芬蘭科技產業創新研發重要支柱。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 何謂「Sitra」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7945&no=55&tp=5 (最後瀏覽日:2025/11/24)
引註此篇文章
你可能還會想看
落實綠色供應鏈 台灣廠商尚待加強

  歐盟推動的有毒物質禁制令( Restriction of Hazardous Substances, RoHS )自今( 2006 )年 7 月後開始啟動,國內多家 IT 廠商如主機板、液晶螢幕等業者均表示產品符合 RoHS 規範,政府提供的資料也指出,台灣大約八成的供應商和製造商符合 RoHS 規範,但是依照綠色環保產品行銷業者的觀察,實際數據遠低於此,應該只有五成不到。   所謂的 RoHS ,係明列自 2006 年 7 月後,製程、設備及材料處理研發禁止使用 6 種有毒物質,如鉛、汞、鎘等,內含六項管制物質的產品將不可在市面流通,屆時輸歐的電子、電機產品皆必須符合該標準。如果一旦抽驗發現有毒物質,產品即可能遭受召回、高額罰款或者長期法律訴訟。   廠商所謂的「符合」還有很多可議的空間,主要原因有兩種:首先製造商在取得供應商提供的原物料時,也許前者的確不含有毒物質,但是在製程、運送過程中,原物料仍有被污染的可能性,例如有鉛和無鉛產品共用一條生產線。然而製造商但憑供應商提供的品質文件就聲稱終端產品符合了 RoHS 規範。   其次,即使是供應商表示原物料符合 RoHS 規範,也還有待商榷,因為這必須判定供應商的原物料送審時,是以混測還是均質檢測。所謂的混測就是把包含兩三種不同原料的產品一併送測,這時候即使單一原料含有有毒物質,但在和其他物質含量平均後就無法檢測出來。均質檢測則就是每個原料都單獨出來檢驗。由於後者的成本高出許多,因此國內供應商多以混測方式送審,使得檢測結果可信度並非絕對。   RoHS 對將大量產品輸出歐洲市場的台灣 IT 產業影響深遠,根據經濟部技術處所提供的資料,據估計將有近 3.5 萬家廠商、高達新台幣 2,446 億元的產值將受到衝擊。基於此原因,經濟部技術處於去( 2005 )年七月啟動「寰淨計畫( G 計畫)」,結合系統廠商、檢測驗證機構、資訊服務業者等單位,以系統廠商帶動下游供應商的方式,加速國內電腦廠商推出符合環保規範的產品。儘管政府推動甚殷,國內供應商的確在前年開始準備,不過要確實符合 RoHS 之規範精神,而非僅是形式上符合,仍有待政府與業者共同努力。

歐盟執委會發布新產業策略指導方針,協助企業面對氣候中和及數位領導轉型之挑戰

  歐盟執委會於2020年3月10日公布產業策略指導方針,名為「因應全球競爭、綠色、和數位歐洲的新產業策略」(A new industrial strategy for a globally competitive, green and digital Europe),以幫助歐洲產業在面臨近年氣候中和及數位領導變遷時,因轉型而產生的過渡期。此次公布的產業策略指導方針,包含三大主題,分別是:(1)新產業策略(A new industrial strategy)、(2)新中小型企業策略(A new SME strategy)以及(3)企業與消費者的單一市場(A single market that delivers for our businesses and consumers);而其中又以「新產業策略」為該指導方針之重點。   為提升歐洲的產業領導地位,「新產業策略」中論以三個關鍵優先事項,分別為:維持歐洲產業的全球競爭力和公平競爭環境、2050年以前達成氣候中和(climate-neutral)目標,以及塑造歐洲未來數位化。為達成前述優先事項,歐盟執委會提出一系列未來行動: 推行智財權行動計畫(Intellectual Property Action Plan)以保護歐盟技術主權,並採行適合綠色和數位轉型的法規框架; 持續檢討修正歐盟競爭相關法令(EU competition rules),確保法規能適應快速變化的經濟環境; 為維護產業在歐盟境內外的公平競爭環境,執委會將於在2020年中以前出版白皮書,處理歐盟單一市場中因外國補貼而引起的扭曲效應,以及歐盟境內的外國採購和外國資金問題; 推行關鍵原料行動方案(Action Plan on Critical Raw Materials),確保關鍵原物料穩定供應;支持戰略數位基礎設施和關鍵技術發展,增強歐洲產業及戰略自主地位; 其它則有對綠色公共採購進一步立法、發展低碳產業和技術、支持永續型智慧交通產業等。

為降低奈米材料風險以保障健康安全,美國環保署(EPA)擬公佈一系列相關新規範

  為了致力於確保及避免因特定奈米材料的曝露而不經意對環境、健康與安全(Environmental, Health and Safety,簡稱EHS)帶來潛在危害,美國環保署(Environmental Protection Agency,簡稱EPA)預計將於今(2011)年1月針對奈米材料的管理規範公佈三項新規定,此舉將使得EPA更能對於目前既有與未來新興奈米材料上有更充分的管理空間,同時這三項新規定也將接受來自公眾與各界人士的意見評論。   這三項新規定分別與顯著新用途規則(Significant New Use Rule)、試驗規則(Testing Rule)和資料收集規則(Data Collection Rule)有關。首先,就顯著新用途規則而言,多年來相關倡議團體(advocacy group)請求EPA將既有的奈米材料視為是「毒性物質管理法」(Toxic Substances Control Act,簡稱TSCA)下的顯著新用途,依此EPA將可管理奈米銀、奈米級二氧化鈦、奈米級氧化鋅等材料,亦可因此對要求廠商限制產量、採取勞工安全措施、進行毒性測試,並要求廠商不得故意將奈米材料釋出或排放至環境中。雖然現在尚無法確知詳細法令規定,但已知EPA有意透過TSCA第5條處理上述種種問題,其可能作法為奈米材料將不再受既有化學物質並非顯著新用途的限制,而任何以既有化學物質製成的新型奈米材料將被視為是顯著新用途。   其次,則是試驗規則,目前EPA對於特定奈米材料要求進行90日呼吸毒性試驗,而新規定將在TSCA第4條之下,要求對奈米粘土、奈米氧化鋁、奈米管等也進行相同的試驗。此係由於目前在經濟合作開發組織(Organization of Economic Cooperation and Development,簡稱OECD)主導的毒性試驗計畫之下,仍未有其他國家願意主導奈米黏土、奈米氧化鋁的試驗,以及通常90日呼吸毒性測試所費不貲,故未來美國預計率先投入,各界亦期盼EPA所提出的新規定將准予廠商以合作提出申請,以利於降低成本並落實相關試驗。   此外,資料收集規則將要求廠商必須正式遞交相關奈米材料的EHS資料,以供EPA進行評估審查,故新規定將在TSCA第8條之下,將原先EPA「奈米材料管理計畫」(Nanoscale Materials Stewardship Program,簡稱NMSP)的自願性參與改為強制性的資料收集,然而由於TSCA中規定對於僅使用少量奈米材料或作為研究目的者,可申請免除資料收集,故廠商仍可依此排除此一義務。   綜合以上,使用相關奈米材料的廠商應密切觀察未來三項新規定的發展動向,以確定日後如何遵守EPA的相關法令規定,落實風險管控,保障自身權益。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP