美國國家標準技術局(National Institute of Standards and Technology, NIST)於近日(2013年7月)更新電子簽章的技術標準「FIPS (Federal Information Processing Standard) 186-4數位簽章標準」,並經商務部部長核可。NIST於1994年首次提出電子簽章標準,旨在提供工具可資促進數位時代的信賴性,後續也隨著技術進步與革新,而有多次修訂。此次修訂,主要是調合該標準,使之與NIST其他加密相關指引(如金鑰加密標準)一致,以避免將來可能產生的矛盾。 此次增訂,亦明列出三種可保護資料的簽章產製與確認技術:數位簽章演算法(Digital Signature Algorithm, DSA)、橢圓曲線簽章演算法(Elliptic Curve Digital Signature Algorithm, ECDSA)、以及RSA公眾金鑰演算法(Rivest-Shamir-Adleman Algorithm, RSA)。 其他修訂的部分,還包括語彙的明晰化,以及降低對於隨機號碼產生器的利用限制…等。
專利連結/專利扣合機制:國際新藥研發成果保護法制之新興討論議題我國藥廠普遍以產製學名藥為主,而新藥研發風險高且非一蹴可及,故當前藥品科專的研發重點以發展類新藥(redesign drugs)主軸,希冀透過類新藥研發的「成功經驗」,引導業界走出學名藥,投入更高層次藥品領域,推動產業發展。鑑於製藥產業乃是高度規管的產業,除了技術研發以外,也必須切實掌握相關的法規議題,避免因不諳法規致使研發投資錯置或浪費。 觀察國際新藥研發成果保護法制之發展趨勢,藥品查驗登記程序與專利有效性相互扣合的機制(patent-registration linkage),極可能在可預見的未來成為國際間討論的重要議題,鑑於藥品科專之研發補助方向已由學名藥延伸至新藥技術能量,實有必要瞭解政府投入資源鼓勵研發的類新藥,未來由業界承接後是否可能受到此一機制的影響。 藥品查驗登記程序與專利有效性相互扣合機制一般被簡稱為「專利連結」(patent linkage),「專利連結」亦有稱為「專利扣合」,概念上係指將學名藥(generic drug)的上市審查程序,與原開發藥廠之參考藥品(the originator reference product)的專利權利狀態連結在一起;進一步而言,一旦新藥通過主管機關的審查上市後,只要在該新藥相關的專利有效期間,主管機關即不應核准該新藥之仿製藥品上市。 專利連結乃是美國藥品法規與專利法交錯下特有之產物,然美國透過不斷地對其貿易伙伴訴求專利連結的重要性,在美國以外,已有多個國家於其藥品審查程序中建立與專利之連結關係,例如:加拿大、新加坡、澳洲等國。在藥品上市審查之過程中予以專利連結之目的,係為透過機制設計,確保主管機關不得在原開發藥廠之專利到期前核准學名藥上市。在美國法制下,專利連結的運作植基於四大核心概念:(一)新藥相關之專利資訊應於上市後系統化公開;(二)新藥專利有效期間內,主管機關不應核可後續申請者之上市申請;(三)盡可能於許可學名藥上市前解決專利有效性爭議;(四)鼓勵未涉及專利侵權之學名藥及早上市。 值得注意的是,美國專利連結法制所講的學名藥,包括狹義及廣義的學名藥,前者是指具有相同的活性成分、相同的劑型、治療相同適應症的藥品;後者則是指對已上市新藥的改良藥品,可見其概念上涵蓋我國當前鼓勵研發的類新藥。專利連結對於類新藥之影響,需視其如何上市而定,若類新藥是以NDA方式申請上市,雖然上市成本高,但其研發成果卻可以因為實施專利連結制度,享有更進一步的保護;另一方面,若廠商基於成本考量不願自行或委託他人進行臨床試驗,因而無法提出完整之NDA申請資料者,則專利連結將會對其產生衝擊。 綜上所述,雖然專利連結制度具有鼓勵新藥研發的作用,但由於我國當前製藥產業結構仍以中小型規模的學名藥為主,加上我國藥品專利之申請及取得者,90%以上為外國藥廠,故若實施專利連結,短期內勢將衝擊我國製藥產業,且美國、加拿大的實務運作經驗顯示,專利連結制度容易被藥廠濫用,因此我國在考慮是否建立此一制度之前,必須先就我國製藥產業的競爭情勢有所瞭解,並充分掌握我國產業結構與先進國家製藥產業之根本性差異,始能根據我國國情制訂權衡原開發藥廠與學名藥廠雙方利益,並保障公眾健康權益之法制。 當前最重要者仍是要提醒廠商尊重智慧財產之重要性,既然學名藥是要在專利到期後上市,則學名藥廠商在進行其新藥開發時,自應有完整規劃與佈局。開發狹義學名藥,其幾乎等同原開發藥廠的品牌藥,對於我國廠商技術能力之提升有限,故應鼓勵廠商投入廣義之學名藥(類新藥)之研發,如此不但有迴避專利之可能,亦可逐步累積我國產業之研發能量,則專利連結將不會成為其研發與競爭之阻力。
「巨量資料應用」當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。 在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。