德國經濟與能源部於2017年12月公布數位經濟2017監測報告,就ICT及網路經濟的表現和競爭力統計各產業數位經濟程度,並針對德國數位轉型現況及挑戰進行分析並提出相關建議。
報告資料指出, 在六大創新應用潛力的部分,14%的企業已投入工業4.0改造,集中於機械製造業,數量有逐步上升趨勢;物聯網應用則以服務業居多,特別是知識密集型服務提供者;33%的企業有提供智慧服務,以客戶為導向的企業,例如資通訊業、金融保險業,使用比例更為明顯;19%企業開始利用巨量資料,多集中於大企業或先進產業;11%企業有利用機器人及感測器;人工智慧則尚處於起步階段,而使用者多集中於資通訊產業。就上述資料顯示,推動數位轉型尚待加強。另外,今年監測報告聚焦「數位聯網及合作」議題,結果顯示,約六成的企業與其商業客戶有進行數位聯網,而只有約四成的公司與新創公司有合作,因此尚有許多創新潛力尚未得到充分利用。
國際數位經濟排名第六,落後美國、南韓、英國、日本、芬蘭。在獲得風險資本可能性的表現最佳,整體創新能力也處於相對領先地位,惟電子化政務服務較為落後,有待加強。在關鍵政策需求部分,以寬頻建設促進政策、創建數位化友善法律框架,以及獲取創新基礎的公共知識最受矚目。
本文為「經濟部產業技術司科技專案成果」
經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
美國法院將考慮命Google提交相關資料美國布希政府為捍衛1998兒童線上保護法(1998 Child Online Protection Act),要求法院命Google提交有關民眾使用該公司之搜尋引擎所輸入之關鍵字資料,以證明透過搜尋引擎,兒童使用電腦連結到色情網站並非不易。但是,Google主張此將會危及其使用者個人的隱私以及其營業秘密。 一名負責審理此案的法官於日前表示,其將會考量政府蒐集此等資料的需求以及Google之使用者的隱私保護議題,且其可能會允許司法部 (Justice Department) 可以接近使用 (access) 一部分由Google所建立的網站連結目錄,但並不是Google使用者所輸入的關鍵字資料。
加拿大競爭局發布人工智慧與競爭諮詢報告加拿大競爭局(Competition Bureau Canada,下稱競爭局)為更了解人工智慧如何影響或促進競爭,於2025年1月27日發布人工智慧與競爭諮詢報告(Consultation on Artificial Intelligence and Competition)。競爭局於意見徵詢期間獲得來自學術界、法律界、產業協會及大型科技公司的意見書。 諮詢報告彙整意見書內容並列出以下重點: 1. 人工智慧從資料輸入、基礎模型至終端產品或服務各階段皆在快速發展,可以為市場帶來新的競爭或阻礙競爭,人工智慧可能影響競爭原因包含資源依賴、資料控制及市場參進障礙等等。 2. 人工智慧領域中大規模投資是技術成長的重要關鍵,大型企業可藉由市場力量減少競爭或進行創新,少數大型企業因擁有較高的投資能力及數據資料專屬性,在基礎架構層(運行人工智慧所需的工具,如人工智慧晶片、雲端運算及超級電腦等)中佔有極高的市場份額,但也有部分意見認為人工智慧市場仍蓬勃發展中,亦有企業或學術機構未過度依賴專有數據但仍能開發出產品。 3. 人工智慧可能導致反競爭行為,企業雖可透過垂直整合來降低成本並提高效率,但可能會減少現行市場內部競爭,或透過具有人工智慧的演算法進行定價,達到操縱市場價格的行為,現行反壟斷法未來是否可以解決此一問題還有待觀察。 藉由諮詢的過程,競爭局更能掌握人工智慧發展、也了解公眾對話的重要性,意見書亦有助於該局未來提出兼顧人工智慧發展及促進市場競爭之政策措施。 我國公平交易委員會已於112年5月成立AI專案小組,負責掌握國際間人工智慧相關競爭議題的趨勢與發展,並針對現行人工智慧發展與競爭法執法研提政策配套措施,我國公平交易委員會與加拿大競爭局對於人工智慧與市場競爭議題之後續動態,值得持續追蹤。
英國資訊專員辦公室(ICO)發現警方有大量數位證據未落實管理措施,建議司法機關應強化業務流程、人員之控管機制英國資訊專員辦公室(Information Commissioner's Office,下稱ICO)於2025年8月18日讉責南約克郡警方(South Yorkshire Police,下稱SYP)刪除超過9萬6千筆穿戴式攝影機影片(body-worn video,下稱BWV)證據,強調SYP未落實資料識別、第三方監督及備份機制等資料管理措施。 警方使用BWV作為記錄警方執法過程之取證方式,目的為提高透明度、公眾信賴及取得最佳證據等。由於BWV證據具備公正性及準確性,亦可減低對於受害者證據之依賴。當警員換班時,需要將BWV證據下載至指定地點,先傳送至「數位證據管理系統(Digital Evidence Management,下稱DEM系統,該系統由第三方業者管理)」後,再傳輸至「儲存網格(Storage Grid)資料庫」。倘若發生爭議,SYP將檢視「儲存網格資料庫」中的BWV證據。 2023年SYP發生遺失大量BWV證據之爭議事件,事實整理如下: 2023年5月升級DEM系統後,SYP改將資料儲存於本地硬碟。同年8月7日時,SYP發現在儲存網格資料庫中,具錯誤刪除96,174筆原始BWV證據之紀錄,經調查發現,在同年7月26日,第三方將本地資料傳輸到儲存網格時,曾發生大規模的資料刪除事件。 由於在進行備份時,未使用特定的檔案名稱或其他可識別的資料標記等方式標記資料,即使SYP內部已針對95,033筆BWV證據進行備份,仍無法比對確認「已被永久刪除的BWV證據」數量,且遺失之資料共涉及126起刑案,其中更有3案受影響,甚至有1起案件指出,若BWV證據存在,則相關案件的檢調程序應能夠有所進展。 ICO亦指出SYP雖與第三方簽署契約,卻未明定處理程序,且未監督第三方的遠端存取行為。SYP早在2019年,已發現備份機制存在問題,但當時未向高階管理人員報告相關問題的完整狀況,導致未採取補救措施。 綜上述,ICO提出SYP應確保所有紀錄應以清晰、可識別的方式進行標記;在允許第三方存取系統前,應完成風險評估及確認管控要求,並持續監督第三方等改善建議;以及應建立能夠有效還原任何遺失BWV證據的備份方案。 另外依英國皇家檢察署(Crown Prosecution Service)的統計顯示,因缺乏定罪的必要證據,包含缺乏數位證據,如受害者詢問或隨身攝影機影片遺失等各類原因,導致無法進行審判的皇家檢察署案件,整體呈現上升趨勢,從2020年的7484起案件,上升到2024年的8180起案件。 為系統性建立及強化數位證據管理機制,我國司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局共同推動之「司法聯盟鏈共同驗證平台」,其以「b-JADE證明標章」檢視既有的數位證據監管制度,其他司法機關亦可參照「b-JADE證明標章」以確保採取有效之資料識別、第三方監督及備份控管作法,除了控管數位證據的相關業務流程、內外部人員等,亦應促使內部滾動式檢視問題及須定期向主管回報,以利調整規劃。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)