歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。

  指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。

  指引的主要內容包括:
  個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。
  禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。
  GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。
  工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。
  對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。
  「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。
  工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。
  在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7971&no=64&tp=1 (最後瀏覽日:2025/10/30)
引註此篇文章
你可能還會想看
美國國土安全部保護物聯網策略原則簡介

歐盟與美國宣布就新的跨大西洋資料傳輸框架達成原則性協議

  歐盟委員會與美國白宮於2022年3月25日發布聯合聲明,宣布雙方已就新的跨大西洋資料傳輸框架達成原則性協議。此舉旨在因應2020年7月歐盟法院(Court of Justice of the European Union)於Schrems II案的判決中宣告「歐盟—美國隱私盾協定」(EU-US Privacy Shield Framework)不符合歐盟一般資料保護規則(General Data Protection Regulation, GDPR)而無效。依照該聯合聲明,新的框架將在雙方間資料流動的可預測性、可監督性、可信賴性以及可救濟性等方面進行補強,以充分維護公民的隱私與自由權利。   目前,該框架仍處於原則性協議的階段,具體細節仍有待後續談判。聯合聲明指出,美國在下列三個方面做出了「重大承諾」: 加強控管美國的情報活動,以確保所追求國家安全目的適法,且所採取的手段係在必要範圍內,而未過度侵犯公民的隱私與自由。 建立具有約束力且獨立的多層次救濟機制,其中包含一個由非政府人員所組成的「個人資料保護審查法院」,並賦予該組織完全的審判權。 針對情報活動強化分層且嚴格的行政監督機制,以確保其合乎隱私與自由的新標準。   上述原則性協議的達成,表面上無疑是一項好消息,將有助於解決雙方跨境資料傳輸的法源爭議,並避免持續演變成嚴重的歐美貿易爭端。然而,美國政府能否順利將新框架轉化為具有約束力的國內行政命令,仍存在相當多的不確定因素。若結果為否,則最終亦難以達成取得歐盟根據GDPR所為「適足性認定」(adequacy decision)的政策目標。

FCC決定將限縮頻率拍賣規範

  美國政府為因應數位匯流趨勢,自 2004 年起開始逐漸釋放新的頻率執照,以供網路多媒體服務或新興通訊業者申請。不過因為先前的拍賣方式是採匿名制,並將頻率切割成小頻段拍賣,而導致競標者間共謀串連,造成拍賣價格過低的情形屢見不鮮。另一方面,由於頻率交易制度( trading )盛行,使無線網路業者為了湊足足夠頻段,必須花費更多的成本去租用或購買頻段來經營業務。以上二個因素使頻率的拍賣出現缺乏競爭的現象。   為使頻率的拍賣能夠達到競標的目的, FCC 決定更弦易轍改變拍賣的方式。 2006 年 4 月 11 日 美國聯邦通訊委員會( FCC )投票通過在 6 月 29 日 將舉辦的拍賣,除了取消以往的匿名性競標,將例外以較大的頻段進行公開拍賣,讓更多的有意願經營業務的競標者參加。   目前有部分消費者團體贊同這項決定,認為為可以終結盲目拍賣( blind bidding )的亂象,以及杜絕大企業壟斷頻段的情形。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP