德國柏林高等法院(LG Berlin)判決「Facebook」違反聯邦資料保護法

  德國柏林高等法院(LG Berlin)於2018年1月16日在德國聯邦消費者中心協會(Verbraucherzentrale Bundesverband)對 Facebook提起之訴訟中,判決 (Az. 16 O 341/15)Facebook網站之預設功能(Voreinstellungen)和部分使用及資料保護條款(Nutzungs- und Datenschutzbedingungen),違反德國聯邦資料保護法(Bundesdatenschutzgesetz)之相關規定,因此,部分針對企業徵求用戶同意使用其資料之條款被判定無效。

  Facebook在其隱私設定中心隱藏對用戶資料保護有利之默認設置,且在新用戶注冊帳戶時未充分告知,故未符合用戶同意條款之要求。依據聯邦資料保護法之規定,個人資料僅允許在相關人同意下徵集及使用。為讓用戶能在知情下自行判斷是否同意個資使用,網路供應商須清楚、詳盡告知資料使用之方式、範圍及目的。但Facebook並未遵守該項要求,Facebook在手機App上已自行啟用定位服務,一旦用戶使用聊天功能,將透露其所在位置。尤其在隱私設定中,已預設各種搜尋引擎可取得用戶個人版面之連結,任何人均可快速和簡易的透過此種方式,發現任一用戶在Facebook上的個人資訊。因用戶能否被事先告知無法確實保障,對此,法官判定5項Facebook備受聯邦消費者中心協會批評的預設功能無效。

  此外,柏林高等法院亦宣告8項包括預擬同意之服務條款無效,依照這些條款之規定,Facebook可將用戶之姓名和個人資訊運用於商業、贊助商或相關事業之內容,且其條款並未明確說明,哪些資料會被傳送至美國,以及其後續處理過程與所採用之資料安全標準為何。法官認為,上述預擬條款之意思表示並非有效之資料使用同意授權。此外,用戶在Facebook僅可使用實名之義務亦屬違法,德國聯邦消費者中心協會對此表示,電信媒體法(Telemediengesetz; TMG)規定,網路供應商須儘可能讓網路用戶匿名或他名參與網路運作,然而柏林高等法院對此觀點仍持保留態度。

  柏林高等法院於判決中強調,本案單就聯邦消費者中心協會對Facebook之用戶使用條款是否有效提起之訴進行判決,並非判斷支援此些條款運作的資料處理過程之合法性。儘管如此,法院之見解仍可能對資料處理過程合法性之判斷造成影響。該項判決目前仍未最終定讞,故本案兩造皆可上訴柏林最高法院(Kammergericht),尤其聯邦消費者中心協會認為,Facebook以免費使用為廣告宣傳用語,不無誤導消費者之可能,故將對此提起上訴。至於未來本案上訴至柏林最高法院後之發展,關係個人資料保護程度之擴張及網絡供應商可用範圍之限制,故仍須持續關注。

相關連結
相關附件
你可能會想參加
※ 德國柏林高等法院(LG Berlin)判決「Facebook」違反聯邦資料保護法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7973&no=0&tp=1 (最後瀏覽日:2025/05/20)
引註此篇文章
你可能還會想看
美國加州「對話機器人揭露法案」

  美國加州議會於2018年9月28日通過加州參議院之對話機器人揭露法案(Bots Disclosure Act, Senate Bill No. 1001)。此一法案於美國加州商業及專門職業法規(Business and Professions Code)第七部(Division)第三篇(Part)下增訂了第六章(Part)「機器人」乙章,擬防範「利用對話機器人誤導消費者其為真人同時並誤導消費者進行不公平交易」之商業模式,本法案將於2019年7月1日正式生效。依此法案,企業如有使用對話機器人,則應揭露此一事實,讓消費者知悉自己是在與對話機器人溝通。   美國加州對話機器人揭露法案對於「機器人」之定義為全自動化之線上帳戶,其所包含之貼文、活動實質上並非人類所形成。對於「線上」之定義為,任何公眾所可連結上之線上網站、網路應用軟體、數位軟體。對於「人類」之定義為自然人、有限公司、合夥、政府、團體等其他法律上組織或擬制人格。如業者使用對話機器人進行行銷、推銷時,有揭露其為對話機器人之事實,將不被認定違反對話機器人揭露法案,但揭露之手段必須明確、無含糊且合理可讓消費者知悉其所對話之對象為非人類之機器人。值得注意者為,美國加州對話機器人揭露法案,針對「美國本土造訪用戶群在過去12月間經常性達到每月10,000,000人」之網站,可排除此規定之限制。   本法案僅課予業者揭露義務,至於業者違反本法之法律效果,依本法案第17941條,需參照其他相關法規予以決定。例如違反本法案者,即可能被視為是違反美國加州民法揭露資訊之義務者而需擔負相關民事賠償責任。最後值得注意者為,本法案於第17941條針對「利用對話機器人誤導公民其為真人同時影響公民投票決定」之行為,亦納入規範,亦即選舉人如有利用對話機器人影響選舉結果而未揭露其利用對話機器人之事實時,依本條將被視為違法。

智慧財產權盡職調查(IP Due Diligence)

  智慧財產權盡職調查(Intellectual Property Due Diligence, IP DD),又稱智慧財產權稽核(IP Audits)。所謂盡職調查(Due Diligence, DD)係指:即將進入投資或購買交易前,投資者或其委託人透過事實證據所進行與投資或購買相關的評估。評估內容包含公司結構、財務狀況、業務、稅務、人力資源等,亦涵蓋有形資產與無形資產。其主要目的在於釐清該投資或購買是否存在潛在的法律風險。隨智慧財產權的概念愈來愈成熟,智慧財產權盡職調查也益發重要。智慧財產權盡職調查的內容常會包含:財產權(如:註冊地域、質押或保全情形)、授權或轉授權限制、申請之時期、優先權效期、爭議或訴訟(如:是否存在專利權無效之風險)。智慧財產權盡職調查的資料蒐集方式除了調閱智慧財產權申請記錄(file wrapper)、保密契約、授權文件,常見調查方式亦包含訪談重要員工和審閱發明人的僱傭契約。   假若沒有善盡智慧財產權盡職調查,很可能會後續引發潛藏的風險,諸如:估值錯誤、交易可能會因為未提前排除繁冗細節而遲延進而影響投資人意願、可能會導致必須重新談判,最嚴重可能必須放棄整個交易。未善盡智慧財產權盡職調查著名的實例是蘋果(Apple)與唯冠的iPad商標爭議。2006年蘋果策畫平板電腦並希望以iPad為名,台灣的唯冠集團早在2000年起於多國註冊iPad電腦商標。2009年蘋果透過英國子公司以3.5萬英鎊收購唯冠的iPad全球商標,並於2010年推出iPad。因為蘋果的智慧財產權盡職調查疏漏,而未發現iPad於中國大陸之商標權屬於深圳唯冠公司而非台灣唯冠,所以不能進入中國大陸市場。最後,蘋果與深圳唯冠以6,000萬美元鉅額和解。從iPad案可窺知智慧財產權盡職調查之重要性。

澳洲及紐西蘭公路監理機關聯合會發布輔助與自動車輛駕駛之教育與訓練研究報告

  澳洲及紐西蘭公路監理機關聯合會(Austroads)於2020年3月18日發布「輔助駕駛及自動駕駛車輛之駕駛人教育及訓練報告(Education and Training for Drivers of Assisted and Automated Vehicles)」,該報告目的在於研究有哪些技巧、知識與行為,為目前與未來人們使用具有輔助或自駕功能車輛所需具備的;並檢視註冊與發照之相關機關應擔任何種角色,以確保駕照申請人具有足夠能力以使用相關科技。報告中所關注之輔助與自駕車輛,為具有SAE自動駕駛層級第0至第3級之輕型或重型自駕車輛;目前澳洲道路規範並未禁止第3級之自駕車使用,但駕駛人仍應保持對車輛之控制且不得同時進行其他行為。   報告認為目前之駕駛執照發照架構尚不需改變,但註冊與發照機構仍可於輔助與自動駕駛車輛的學習與評估中扮演一些角色,包含: 鼓勵經銷商、製造商與相關利益團體進行有關如何安全運用相關系統,同時避免過度依賴之教育與訓練。 支持將自駕車技術相關之特定重要資訊整合進所有層級之教育與訓練中,但不使用強制性之評估程序進行能力評估。 應關注如何於澳洲設計規範(Australian Design Rules, ADRs)或澳洲新車評估計畫(Australasian New Car Assessment Program, ANCAP)中規範特定車輛之安全公眾教育、整合重要資訊於既有的知識與技術訓練,以及建立強制之學習計畫。   未來澳洲及紐西蘭公路監理機關聯合會將繼續發展相關計畫以實施本報告中之相關建議,以使教育訓練系統更加完善。

美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作

美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。

TOP