加拿大參議院交通與通訊委員會提出自駕與聯網車輛政策發展報告與建議

  2018年1月加拿大參議院交通與通訊委員會(Standing Senate Committee on Transport and Communications)向加拿大交通部提出「駕駛改革:技術與自駕車的未來(Driving Change : Technology And The Future Of The Automated Vehicle)」報告。

  報告指出加拿大面臨自駕車可能遭遇之挑戰,並列出提供交通部發展自駕車策略之政策建議。

  其中包含:建議加拿大應成立跨部會單位以整合全國自駕車政策、並整合各地方政府與傳統領域政府透過發展地區模型策略;交通部並應與美國合作,來確保自駕車輛於兩國間運行無障礙;交通部應發展自駕聯網車輛設計的車輛安全指南,指南中應指明製造商於發展、測試與布建自駕車的車輛應有的設計需求,該指南並應持續隨科技發展而更新。

  加拿大政府並應立法授權隱私委員會主動調查與促使製造者遵循「個人資訊保護與電子文件法(Personal Information Protection and Electronic Documents Act)」的權力,並應持續評估聯網車輛的隱私相關規範之需求。

  並應整合利益關係人發展聯網車輛管制框架,特別應包括隱私保護;並應監督自駕與聯網車輛技術競爭之影響,以確保車輛出租公司與其他的延伸市場可持續取得相關營業所需資訊;並應注重加拿大自駕車之測試與發展等對於就業之影響等。

本文為「經濟部產業技術司科技專案成果」

※ 加拿大參議院交通與通訊委員會提出自駕與聯網車輛政策發展報告與建議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7974&no=55&tp=5 (最後瀏覽日:2025/12/15)
引註此篇文章
你可能還會想看
企業蓋廠房 可造林減抵二氧化碳排放量

  企業界興建廠房未來若排放的二氧化碳過高,可以透過在國內外協助造林等方式來改善。   農委會日前組成農業森林議題工作小組,積極蒐集國內外相關資料,推廣植樹造林對溫室氣體減量策略及作法,並調查出更精確的碳吸存數據,作為未來碳交易等機制所需的基本資料。其初步估算出每種植一公頃森林可淨吸收七公噸二氧化碳的減量模式。未來將可配合碳交易機制,銷售給需進行二氧化碳減量的業者,農委會已先選定台糖進行合作,未來將推廣至業者的平地造林。   農委會表示,目前的碳交易模式分為兩種,一種是進行國內外的造林,來換取本國二氧化碳的排放量,像是美、日等國,即在中國大陸廣泛種植樹木來換取更多的業者投資,或是在本國境內種植更多的林木,這種交易屬於碳交易。第二種是在本國境內進行溫室氣體的減量,再將減量超過的部分賣給其他國家,亦即清潔費的交易,也屬於廣義的碳交易行為。   為推動我國建立碳交易機制,農委會也已著手進行造林的碳吸存研究,農委會表示,未來碳交易機制建立後,業者興建廠房若排放的二氧化碳超過標準,可以透過協助國內外造林,或付出造林費用給協助造林的單位。在建立交易模式後,未來若企業界興建一座廠房所造成的二氧化碳排放量超過七公噸,即可透過支付一公頃造林費用的方式,達到平衡的效果。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

日本公布設立AI安全研究所與著手訂定AI安全性評鑑標準

日本於2023年12月1日舉辦G7數位技術委員會(G7デジタル・技術大臣会合),由日本數位廳、總務省、經濟產業省共同會晤G7會員國代表,基於人工智慧(Artificial Intelligence,下稱AI)可能帶給全球創造性、革命性的轉變,同時也可能伴隨侵害著作權與擴散假訊息的風險,尤其是生成式AI可能對經濟、社會影響甚鉅,因此針對如何妥善使用AI技術,G7全體會員國共同訂定《廣島AI進程》(広島AIプロセス)文件,其聲明內容簡述如下: 1.訂定涵蓋《廣島AI進程》之政策框架(Framework) 2.訂定涵蓋AI設計、系統開發、規劃、提供與使用等所有與AI有關人員,(All AI actors, when and as applicable, and appropriate, to cover the design, development, deployment, provision and use of advanced AI systems)適用之《廣島AI進程》國際標準(Principle) 3.針對開發高階AI系統之組織,訂定可適用之國際行為準則(Code of Conduct) 為此,日本內閣府於2024年2月14日公布,於經濟產業省政策執行機關—獨立行政法人資訊處理推動機構(独立行政法人情報処理推進機構,下稱IPA)轄下設立日本AI安全研究所(Japan AI Safety Institute,下稱AISI),作為今後研擬AI安全性評鑑標準(據以特定或減少AI整體風險)與推動方式之專責機構,以實現安心、安全以及可信賴之AI為目標。AISI所職掌的業務範圍如下: 1.進行AI安全性評鑑之相關調查 2.研擬AI相關標準 3.研擬安全性評鑑標準與實施方式 4.研擬與各國AI專責機關進行國際合作,例如:美國AI安全研究所(U.S. Artificial Intelligence Safety Institute, USAISI) 另一方面,IPA將以內部人才招聘作為AISI成員之任用方式,預計組成約數十人規模的團隊。日本以與G7會員國共識為基礎,採專責機關—AISI進行研究與規劃,並推動日後擬定AI相關使用規範與安全性評鑑標準,據以實現AI應用安全之目標。我國對於AI技術之應用領域,未來應如何訂定使用安全規範,將涉及專業性與技術性事項之整體性規劃,日本因應AI課題而採行的做法值得我國未來持續關注。

Angie's List起訴Amazon Local侵害營業秘密

  消費者評論服務Angie's List於本月在印第安納州提起一項聯邦訴訟,對象是Amazon Local。Angie's List作為當地交易網站,提供高達75%的本地服務,包括產品和使用經驗。但Amazon Local員工卻通過註冊成為Angie's List的會員,以獲得其他會員名單和下載網站所提供的文件,也包括其他會員的評論和相關資訊。因此20餘名Amazon Local員工被列為共同被告。   該訴訟聲明中指控相關資訊被Amazon Local所使用,用以在西雅圖建立一個競爭性的服務。Angie's List在訴訟中指稱,他在會員協議“明確禁止使用Angie's List的帳戶和資料用於商業目的”,但Amazon Local員工卻違反了契約。“Amazon Local沒有投入必要的時間,資源和合法手段發展自己的研究與Angie's List競爭,相反的,Angie's List和它的員工都選擇了秘密訪問和挪用Angie's List專有信息的快捷方式。   Angie's List指控Amazon Local違反商業機密,竊盜,侵入電腦,民事侵權,電腦欺詐與濫用盜用行為和違反契約。Angie's List請求法院判決Amazon Local賠償其損失,並禁止Amazon Local再使用Angie's List,包括已經得到的資訊。Angie's List也請求未規定的損害賠償,“不當得利”和懲罰性的和其他損害。

TOP