2018年1月加拿大參議院交通與通訊委員會(Standing Senate Committee on Transport and Communications)向加拿大交通部提出「駕駛改革:技術與自駕車的未來(Driving Change : Technology And The Future Of The Automated Vehicle)」報告。
報告指出加拿大面臨自駕車可能遭遇之挑戰,並列出提供交通部發展自駕車策略之政策建議。
其中包含:建議加拿大應成立跨部會單位以整合全國自駕車政策、並整合各地方政府與傳統領域政府透過發展地區模型策略;交通部並應與美國合作,來確保自駕車輛於兩國間運行無障礙;交通部應發展自駕聯網車輛設計的車輛安全指南,指南中應指明製造商於發展、測試與布建自駕車的車輛應有的設計需求,該指南並應持續隨科技發展而更新。
加拿大政府並應立法授權隱私委員會主動調查與促使製造者遵循「個人資訊保護與電子文件法(Personal Information Protection and Electronic Documents Act)」的權力,並應持續評估聯網車輛的隱私相關規範之需求。
並應整合利益關係人發展聯網車輛管制框架,特別應包括隱私保護;並應監督自駕與聯網車輛技術競爭之影響,以確保車輛出租公司與其他的延伸市場可持續取得相關營業所需資訊;並應注重加拿大自駕車之測試與發展等對於就業之影響等。
本文為「經濟部產業技術司科技專案成果」
蘇格蘭於2024年9月24日向刑事司法委員會提交刑事司法革新與家庭暴力審查法案(Criminal Justice Modernisation and Abusive Domestic Behaviour Reviews (Scotland) Bill),期望透過數位程序,提升司法部門的有效性與效率。 在刑事司法數位化部分,主要為將2020年及2022年因疫情而制定的臨時措施正式化,臨時措施包含: 1、在訴訟文件上使用電子簽名。 2、以電子方式寄送訴訟文件。 3、以虛擬方式參加刑事法庭。 4、提高定額罰款限額。 5、羈押的全國管轄權。 此外,在刑事司法數位化部分,亦新增兩項數位創新條款,例如透過數位證據共享功能(Digital Evidence Sharing Capability, 下稱DESC)平臺來進行: 1、在刑事程序中使用證據照片而非實體證據。 2、使證據之複製品效力等同於實體證據。 對於刑事司法革新與家庭暴力審查法案而言,DESC在其中扮演了十分重要的角色。DESC改變了數位證據的儲存、編輯、傳輸以及在法庭上展示的方式。且DESC可透過多種身分驗證,並透過系統自動生成之具唯一性的資料識別碼並記錄上傳者及上傳時間,資料上傳系統後亦會自動留存所有資料編輯、修改、刪除行為等審核措施,確保數位證據的正確性、完整性與可驗證性,防止數位證據在上傳DESC後遭到竄改或損毀,亦可透過資料識別碼的比對確保數位資料的正確性與完整性。 蘇格蘭提交的刑事司法數位化與家庭暴力審查法案顯示,數位技術的應用範圍已擴大到司法領域,並透過身分驗證、記錄上傳者、上傳時間及資料識別碼等資料存證技術,確保數位證據資料的正確性、完整性與可驗證性。我國由司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局等機關合作,透過區塊鏈技術建置「司法聯盟鏈共同驗證平台」,提升辨識數位證據同一性之效率,並確保數位證據難以被竄改,以達到加速訴訟進行之效果。惟如要透過法院採納數位資料為證據之方式,來達到加速訴訟進行之效果,重點在於要強化針對數位證據資料之管理,有訴訟證明需求的組織須通過b-JADE證明標章,以確保上鏈前之資料管理與上鏈後之資料品質。我國企業如欲強化數位資料的正確性、完整性與可驗證性,可參考資訊工業策進會科技法律研究所創意智財中心所發布之重要數位資料治理暨管理制度規範(EDGS),建立資料存證制度,確保數位資料作為證據之效力,以提升法院採納數位資料作為證據之可能性,亦有利於加速訴訟程序之進行。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。 此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。 時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。
美國健康保險制度下的個人資料安全保護隱憂為降低美國人民在醫療保險費用的支出,同時加強管理現有的保險產業,同時提供美國人民一更易負擔的醫療保險制度,美國總統歐巴馬自上任以來遂特別加強推動美國健康保險制度,與相關現有醫療保險制度的建置與改革,並於2010年3月23日通過「病患保護與平價醫療法案」(The Patient Protection and Affordable Care Act,本法暱稱Obamacare),並計劃於今(2013)年10月正式啟動上路。 為集中且便利相關機構快速讀取單一個人之相關資訊,Obamacare計畫透過聯邦數據服務樞紐(The Federal Data Services Hub)的建置,彙整目前美國各單一政府單位所保有之全民個人資料,該類資料涵蓋個人醫療、教育、和財務等相關資訊,提供各州政府單位機關有需求時得以讀取。然而,儘管該服務樞紐的用意係為提供更完整的個人資料,然而其卻也因其本身具集中單一個人資料於一身的特性而受到各界的質疑。反對人士認為,由於該服務樞紐彙整龐大單一個人資料,因此若其未建立完善資訊安全機制,而遭受到不肖駭客入侵竊取個人資料的話,所造成的後果將影響甚遠,再加上未來將管理服務樞紐的美國衛生及公共服務部(The Department of Health and Human Services, HHS),遲遲未能讓外界信服其已建立充分的資訊安全保全系統來保障全美國人民的個人資料,因此反對人士對於該服務樞紐對於個人資料安全與隱私的保全能力感到堪慮。 根據美國隱私法(Privacy Act of 1974),美國政府需提供適當的隱私保全機制來保障美國人民的個人資料,同時,美國聯邦資訊安全管理法(Federal Information Security Management Act of 2002)亦要求美國政府需確保美國人民的個人資料不被濫用,故在該二法案的明文要求下,歐巴馬政府於推行Obamacare之際,相關資訊安全保全系統機制仍須符合標準始得合法運作。Obamacare上路在即,歐巴馬政府與相關部會該如何解決個人資料保護問題,其後續發展實值得觀察。
日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。 本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。 報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。