不爽貓(Grumpy Cat)於2012年於社群網站曝光後爆紅後,不爽貓主人辭去工作成立「不爽貓公司(Grumpy Cat Limited)」,專心經營不爽貓事業並推出馬克杯、服飾等週邊產品,以及參與各類跨界合作等。
2013年「手榴彈飲料公司(Grenade Beverage)」以15萬美元合約取得不爽貓圖像之授權,得以販售以「Grumpy Cat Grumppuccino」為名且印有不爽貓圖像之冰咖啡品項。然而在2015年「不爽貓公司」發現該圖像進而印製在烘焙咖啡與T恤上,已超出原本約定之使用範圍,而對「手榴彈飲料公司」提出著作權及商標之侵權及違約訴訟。
「手榴彈飲料公司」負責人桑福德父子(Nick and Paul Sandford)反訴主張「不爽貓公司」未如當初規畫盡公司營運之協助,造成「手榴彈飲料公司」潛在之營收損失而求償1,200萬美元,包括:未讓不爽貓與喜劇演員威爾法洛(Will Ferrell)及傑克布萊克(Jack Black)參與電影演出、「不爽貓公司」僅在社群網站張貼17則冰咖啡之行銷貼文、「不爽貓公司」不重視冰咖啡事業因而在脫口秀節目中脫稿演出等。
然而,加州南區聯邦地方法院陪審團並未因以上指控而猶疑,認定「手榴彈飲料公司」負責人侵害「不爽貓公司」之著作權與商標,應支付71萬美元作為賠償,至於違反授權約定部分則以1元作為象徵性賠償。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。
日本《研究資料基盤整備與國際化戰略》報告書日本因應各先進國家近年於開放科學概念下,政府資助研發計畫研究資料管理及開放之倡議與制度化推展趨勢,內閣府於2015年提出開放科學國際動向報告書,並在第5期科學技術基本計畫與2019年統合創新戰略中規劃推動開放科學。上述政策就研究資料管理開放議題,擬定了資料庫整備、研究資料管理運用方針或計劃之制定、掌握相關人才培育與研究資料運用現況等具體施政方針。在此背景下,內閣府於2018年設置「研究資料基盤整備與國際化工作小組(研究データ基盤整備と国際展開ワーキング・グループ)」,持續檢討日本國內研究資料管理、共享、公開、檢索之基盤系統建構與政府制度、國家研究資料戰略與資料方針、國際性層級之推動方向等議題,在2019年10月據此作成《研究資料基盤整備與國際化戰略》(研究データ基盤整備と国際展開に関する戦略)報告書,形成相關政策目標。 本報告書所設定的政策目標採階段性推動,區分為短期目標與中長期目標。短期預計在2020年前,正式開始運用目前開發測試中之研究資料基盤雲端平台系統(NII Research Data Cloud, RDC),針對射月型研發計畫研擬並試行研究資料管理制度,建構詮釋資料(metadata)之集中檢索體系,並建立與歐洲開放科學雲(EOSC)之連結;中長期目標則規劃至2025年前,持續調適運用RDC,正式施行射月型研發計畫之研究資料管理制度,確立共享與非公開型研究資料之管理框架,蒐整管理資料運用現況之相關資訊,並逐步擴張建立與全球研究資料共享平台間之連結。
加拿大安大略省通過修正健康資訊保護法加拿大安大略省議會於2016年5月三讀通過修正健康資訊保護法(Health Information Protection Act, HIPA)。該法案藉由一連串措施,包括增加隱私保護、問責制與提升透明度,以提高病人地位。 1.在符合指令定義內,將違反隱私之行為強制性地通報與資訊與隱私專員; 2.強化違反個人健康資訊保護法之起訴流程,刪除必須於犯罪發生之六個月內起訴之規定; 3.個人犯罪最高額罰款提升到50,000元至100,000元,組織則為250,000元至500,000元。 而健康資訊保護法也將更新照護品質資訊保護法(Quality of Care Information Protection Act, QCIPA),有助於提升透明度,以保持醫療系統的品質,更新內容包括: 1.確認病患有權得知其醫療相關資料; 2.釐清不得對關於受影響的病患與家屬保留重要事項之資訊與事實; 3.要求健康與長照部(Minister of Health and Long-Term Care)每五年定期審查照護品質資訊保護法。 安大略省亦正著手研究由專家委員會提出,所有關於提升照護品質資訊保護法所稱重大事故透明度之建議。 藉著透過該目標,將可提供病患更快的醫療,更好的家庭與社區照顧,安大略政府希望可以透過上開手段以保護病患隱私以及加強其資訊透明度。
何謂「阿西洛馬人工智慧原則」?所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。 該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。 其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。