澳洲個人資料洩漏計畫將於二月施行

  澳洲於2018年2月22日施行個人資料洩漏計畫(Notifiable Data Breaches scheme, NDB scheme),該計畫源於澳洲早在1988年所定「澳洲隱私原則」(Australian Privacy Principles, APPs)之規定。對象包括部分政府機構、年營業額超過300萬澳幣之企業以及私營醫療機構。

  根據該計畫,受APPs約束的機構於發生個資洩露事件時,必須通知當事人以及可能會造成的相關損害,另外也必須通知澳洲私隱辦公室(Office of the Australian Information Commissioner, OAIC)相關資訊。

  NBD計畫主要內容如下:

  一 、規範對象:

  1. 包括澳洲政府機構,年營業額超過300萬澳幣企業和非營利組織、私營醫療機構、信用報告機構、信貸提供者、稅號(TFN)受領人。
  2. 若數機構共享個人資料,則該告知義務由各機構自行分配責任。
  3. 關於跨境傳輸,根據APPs原則,於澳洲境外之機構必須以契約明定受澳洲隱私法規範,原則上若因境外機構有洩漏之虞,澳洲機構也必須負起責任。

  二 、個資洩露之認定:

  1. 未經授權進入或擅自公開該機構擁有的個人資訊或個人資料滅失。
  2. 可能會對一個或多個人造成嚴重傷害(如身分竊盜、導致個人嚴重經濟損失、就業機會喪失、名譽受損等等)。
  3. 個資外洩機構無法通過補救措施防止嚴重損害的風險。

  三 、OAIC所扮演之角色:

  1. 接受個資外洩之通報。
  2. 處理投訴、進行調查並針對違規事件採取其他監管行動。
  3. 向業者提供諮詢和指導。

  四 、於下列情形可免通知義務:

  1. 為維護國家安全或增進公共利益所必要。
  2. 與其他法案規定相牴觸者。

  五 、通知內容:

  1. 洩露資料的種類及狀況。
  2. 發生個資外洩事件機構之名稱以及聯繫窗口。
  3. 個資當事人應採取之後續行動,避免再度造成損害。

  惟NBD 計畫對於個人資料的安全性沒有新的要求,主要是對APPs的補充,針對持有個人資料的機構採取合理措施,保護個人資料免遭濫用、干擾或損失, OAIC目前也正在規劃一系列有關個資洩漏事件指導方針及導入說明手冊。

相關連結
※ 澳洲個人資料洩漏計畫將於二月施行, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7983&no=55&tp=1 (最後瀏覽日:2025/12/06)
引註此篇文章
你可能還會想看
英國為打造有利新創環境著手討論修訂主板上市規則

  英國於三月份發布2021年度財政預算案,其中說明為鼓勵新創企業(快速成長型企業)發展而公布了八項策略,包含:立即提供救濟以抵抗新冠肺炎帶來的風暴、政府成立新基金「Future Fund: Breakthrough」投資新創企業、企業激勵員工措施(EMI)之重視、發行高科技技術簽證、培養下一世代人才、新創企業協助成長計畫(針對數位化及企業管理)、研發稅收減免計畫之修正以及英國主板上市規則之修正。   其中英國主板上市規則之修正部分,主要委託外部專家Lord Hill信行獨立審查。經審查後專家提出15項建議,包含: 財政部須向議會提交一份年度報告,並於報告中說明已採取或即將採取之專家建議。 財政部應隨時注意英國金融行為監理總署 (Financial Conduct Authority, FCA)是否為英國打造適合新創企業發展並擁有良好監管之公開市場。 應於優質板(Premium Listing)開放上市公司使用雙層股權結構,但須搭配相關監管措施以維持良好公司治理。 重新定義、命名標準板(Standard Listing)。 修正並降低股權分散之要求,並建議依據不同規模公司設置不同分散比例。 放寬特殊目的收購公司(Special Purpose Acquisition Company, SPAC)限制,同時為保護一般投資人建議新增「異議股東股份收買請求權」。 建議修正公開說明書相關部分,如:放寬豁免規定、允許使用替代文件。 建議考量於英國二次上市之企業毋庸另行製作公開說明書,而允許使用於其他國家上市之公開說明書。 建議修正董事以及發行人責任,促使其提供前瞻性訊息。 擴大科技研發公司上市時豁免獲利之要求至其他新創企業。 建議降低優質板歷史財務文件之要求。 考量如何運用科技提高一般投資人參與公司治理。 修改上市規則以利提高公司籌資之效率。 審查現行公開發行相關規則,確定各規則均有符合設立目的。 放寬廣泛金融生態系統限制,如:放寬養老基金投資限制、解決競爭稅收環境以及中小企業研發優惠。

英國通過《資料(使用與存取)法》,提升資料使用的便利性

2025年6月19日,英國《2025年資料(使用與存取)法》(Data(Use and Access)Act 2025,下簡稱DUA法)正式生效。DUA法的宗旨是在《英國一般資料保護規則》(United Kingdom General Data Protection Regulation, UK GDPR)的基礎上,放寬在特定情形下執法機關、企業與個人使用資料的限制,以提升資料管理及使用的便利性。 DUA法預計將於2025年8月開始分階段實施,重點如下: (1) 放寬自動化決策(Automated Decision-Making, ADM)條件:依據UK GDPR規定,個人有不受純粹基於自動化處理且產生法律效果或類似重大影響之決策所拘束之權利。此項規範確立自動化決策之原則性禁止,僅於符合特定例外事由時始得為之。DUA法則放寬此一限制,未來企業只要確保有向當事人提供自動化決策的資訊、決策結果申訴的管道,以及得人為干預設計之保障措施以後,即可做出對個人有重大影響的自動化決策。 (2) 資料主體存取請求權(Subject Access Request, SAR)規範明確化:當事人有權向持有自身個資的單位請求查閱,DUA法明訂組織在收到請求後應回應的時間,而當事人請求的範圍也應合理且合於比例,避免組織浪費人力搜索不重要的資訊。 (3) 建立有效申訴管道:規定任何使用個人資料的組織都必須設立有效的申訴機制、提供電子化申訴管道、並回報處理結果,若訴求未獲得解決,當事人即可向英國資訊專員辦公室(Information Commissioner’s Office, ICO)提出申訴。 (4) 科學研究得採概括同意機制,商業研究亦屬適用範疇:DUA法明確指出,基於科學研究目的,研究人員於確保適當個人資料保護措施之前提下,得以概括同意(broad consent)方式取得當事人之同意,以利進行科學研究活動。DUA法並明確界定科學研究之範疇可涵蓋商業研究(commercial research),擴大其適用領域。 (5) 允許網站直接使用Cookie:網站與應用程式的儲存與存取技術(Storage and Access Technologies)在低風險情況下,可不取得使用者事前同意,即紀錄使用者瀏覽紀錄。 DUA法將於2025年8月開始分階段實施。如何在科技發展的便利性與個人資料的安全性間取得平衡,是當代社會不容忽視的議題,可持續觀察追蹤英國施行DUA法的成效供我國參考。

歐盟對於不可申請專利的基本生物學方法做出新解釋

  大多數國家是認為動植物為法定不得授予專利之標的,歐盟以往因為歐洲專利公約實施細則(Implementing Regulations to the Convention on the Grant of European Patents,下簡稱實施細則)跟擴大上訴委員會(the Enlarged Board of Appeal,簡稱EBA)決定不一致而造成爭議,EBA於2020年5月做出的新決定,對於動植物是否為可授予專利之標的做出一致性解釋。   在歐洲專利公約(European Patent Convention,簡稱EPC)第53條第2款規定用以生產動植物的基本生物學方法不可授予專利,並於2017年生效的實施細則第28條第2項將其進一步擴張解釋成,僅運用基本生物學方法所產生的動植物不可授予專利,這與EBA在2015年所做出的決定(G 2/12、G 2/13)並不一致,在2015年的決定中提到,運用基本生物學方法來界定動植物的請求項仍可以被接受,因此實施細則第28條第2項與2015年的決定產生衝突。   於2019年,技術上訴委員會(Technical Board of Appeal)在案例T 1063/18中發現了這個問題,並提到EBA討論,EBA表示,考慮到法條涵義可能因時間產生變化,需要對EPC第53條第2款進行動態解釋(dynamic interpretation),實施細則第28條第2項與EPC第53條第2款並未矛盾,而是進一步擴展為,僅通過基本生物學過程,或是由基本生物學方法界定動植物之情況,皆屬於不可授予專利之情況,而推翻之前的決定。而為維持法律安定性,本決定(G 3/19)對於2017/07/01前生效或申請的案件並不具效力。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

歐盟提出通用型人工智慧模型的著作權管理合規措施建議

歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

TOP