德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議:
本文為「經濟部產業技術司科技專案成果」
Google在2006年2月11日推出最新版的桌面搜尋工具Google Desktop 3,它的最新功能可以讓用戶同時搜尋多台電腦的資料。當啟用這項功能後,它會將電腦裡的文件和文字檔案(如Word、Excel)內容予以複製上傳到Google的伺服器上。當用戶在一台電腦搜尋資料時,也會在其他台安裝此工具的電腦自動開始搜尋。Google 表示,目前已經有很多人同時使用數台電腦,這個新功能可以讓使用者的生活更為便利。 但是倡導網路隱私權的團體Electronic Frontier基金會卻表示憂慮。由於新功能可能會讓駭客更容易盜取用戶個人資料,用戶的個人隱私將面臨更大的威脅。該基金會律師Fred von Lohmann認為,使用者應重視個人資料被放在Google伺服器上可能產生的問題,這比便利性更為重要。因為使用時若未花時間處理功能選項和設定問題,它將可能導致個人資料諸如納稅、醫藥和財物紀錄,以及其他文字檔案等資料外洩。
美國青年盜錄電影遭受起訴聯邦檢察官指出 19 歲的 Curtis Salisbury ,在九月二十六日針對他在密蘇里州的聖路易市盜錄電影,並在網路上散佈等非法行為坦承犯案。 Salisbury 利用工作之便,於下班後使用數位錄影機及錄音器材盜錄兩部電影,進而在網路上散佈而遭到起訴。 Salisbury 因而成為第一位根據 “ 家庭娛樂及著作權法案 ” (Family Entertainment and Copyright Act) 而遭受起訴者。 家庭娛樂及著作權法案在 2005 年四月由國會通過,致力於遏止網路上的著作權侵害行為。法案中規定,運用視聽器材於電影院中盜錄電影者,可以處$ 250,000 罰金及三年以下有期徒刑,若進而在網路上傳播者,則需承擔額外的罰則。 儘管這樣的結果使大多數電影製片業者歡欣鼓舞。然而,如此嚴厲的刑罰具有爭議性,原因在於嚴厲的罰則是為暴力犯罪而設計,若應用於著作權相關議題時,實非一個明智的選擇。
新加坡物聯網產品網路安全防護之初探新加坡物聯網產品網路安全防護之初探 資訊工業策進會科技法律研究所 2023年06月30日 壹、事件摘要 近年物聯網(Internet of Things,簡稱IoT)產品蓬勃發展,伴隨著資通安全之威脅卻也日益加增,新加坡為此陸續訂定國內法規,以強化保障新加坡人民資訊流通之自由,並確立了網路安全標籤機制,藉以提高消費者對於物聯網產品資安的認識。另一方面,標籤制度能於消費者使用物聯網產品時,將產品受到不同層級之網路安全防護,或有別於一般用途使用等資訊,迅速傳達給消費者。據此,本文觀測新加坡近年主要的物聯網產品驗證制度與相關法規,供我國參考與借鏡。 貳、重點說明 一、新加坡物聯網網路安全法規 新加坡於2015年成立新加坡網路安全局[1](CSA),陸續為新加坡建立完善之物聯網產品網路安全防護機制,且新加坡於2018年訂定《網路安全法》[2],法案的第一部分已明示將「網路安全」列為實質保障內涵[3],並明訂須透過識別與分析威脅,以有效降低網路安全威脅帶來的風險。另為提高物聯網安全性,首先於亞太地區推出物聯網產品等級評估機制,即新加坡網路安全標籤機制[4](Cybersecurity Labelling Scheme, CLS),致力於保障新加坡的網路空間,並使消費者能夠識別符合網路安全規定之物聯網產品,以利消費者辨認選購。此外,CLS架構下設有驗證中心、通用標準以及標籤分級等措施,以強化物聯網產品資安防護為目的,也能落實《網路安全法》保障新加坡網路安全之精神。 (一)設置網路安全驗證中心[5](Cybersecurity Certification Centre, CCC):為驗證資安相關產品與服務之權責機關,透過CSA建置的驗證標準,成為新加坡企業採用資安產品之參考依據。 (二)建立通用標準(Common Criteria, CC):最初是由加拿大、法國、德國、荷蘭、英國與美國等多個國家安全標準組織聯合提出,以國際標準ISO/IEC 15408(Common Criteria for Information Technology Security Evaluation)作為替代其現有安全評估標準的通用標準。由於通用標準已於國際上受多國承認,資訊服務業者若經過相關驗證時,較易被新加坡企業採用。 (三)建立網路安全標籤機制(Cybersecurity Labelling Scheme, CLS):CSA針對智慧裝置推出網路安全標籤機制CLS,是以《網路安全法》做為上位精神而訂,但並不具強制力,而是以計畫推行之自願性認驗證機制。新加坡政府將物聯網設備根據其網路安全規定之級別進行評估分級,使消費者能夠識別符合較高等級網路安全規定的產品,並做出明智的決定。CLS共可分為4個等級(Level 1~4),第1級為產品滿足相關之基本要求(如密碼要求、提供軟體更新);第2級為該產品係使用安全設計原則進行開發(如進行相關之威脅評估、審驗程序);第3級為該產品經過第三方測試實驗室評估;第4級則經過第三方實驗室之滲透測試。此外,值得注意的是,新加坡亦與德國、芬蘭簽署備忘錄,以相互承認,也因此新加坡CLS網路安全標籤機制與德國的網路安全標籤制度(IT-Sicherheitskennzeichen)、芬蘭的網路安全標籤制度(Finnish Cybersecurity Label),可以進行互通使用。 參、事件評析 新加坡透對於物聯網產品之資安,透過訂定法規、成立權責機關與建立國際通用之標準與標籤機制,針對物聯網產品資安進行不同層次的保障。此外,採「驗證」方式保障人民生活不受網路威脅侵害,同時提高消費者對於物聯網產品資安之意識,可謂一舉數得之作法。而我國於物聯網產品發展以來,有政府以計畫支持「行動應用資安聯盟」提供相關物聯網產品之資安檢測認驗證標章,以供企業或消費者識別,物聯網產品經由實驗室檢測並由行動應用資安聯盟[6]審核通過後,核發合格證書及資安標章,並依照資安風險高低及安全技術實現複雜度,區分三個等級(L1~L3),分為適合一般家庭、商業用途與最高防護強度。於此認驗證機制下,已推出6項產品系列之驗證[7],並且採消費者導向之標章,足見我國政府同樣致力於提高消費者對於物聯網產品資安防護識別之意識;但此認驗證機制或有優化空間,今後可以參考新加坡作法,擴增可進行驗證的產品項目,持續提升保障消費者選購物聯網產品之資訊知悉權,同時可參酌國際上其他重點國家之風險評估方式,以系統性建置物聯網產品資安之風險評估通用標準,以確保該制度未來有機會被其他國家直接或間接承認,為國際接軌做準備,作為今後精進物聯網產品資安之目標,方可促使我國與國際產業鏈、海外市場逐步銜接,提升產業競爭力。 [1]新加坡網路安全局CSA(Cyber Security Agency),隸屬於總理辦公室(Prime Minister’s Office, PMO),由新加坡通訊暨新聞部(Ministry of Communications and Information)管理,https://www.csa.gov.sg/,(最後瀏覽日:2023/6/30)。 [2]Cybersecurity Act 2018, Singapore Statutes Online, https://sso.agc.gov.sg/Acts-Supp/9-2018/Published/20180312?DocDate=20180312, (last visited June 30, 2023). [3]Cybersecurity Act 2018, Part 1 PRELIMINARY, 2.—(1), (i)providing advice in relation to cybersecurity solutions, including— (i) providing advice on a cybersecurity program; or (ii) identifying and analysing cybersecurity threats and providing advice on solutions or management strategies to minimise the risk posed by cybersecurity threats. [4]Cybersecurity Labelling Scheme (CLS), CSA, https://www.csa.gov.sg/our-programmes/certification-and-labelling-schemes/cybersecurity-labelling-scheme, (last visited June 30, 2023). [5]SINGAPORE CSA, Certification and Labelling Schemes, About the Cybersecurity Certification Centre (CCC), https://www.csa.gov.sg/our-programmes/certification-and-labelling-schemes, (last visited June 30, 2023). [6]行動應用資安聯盟(Mobile Application Security Alliance),關於我們〈推動架構〉,https://www.mas.org.tw/about/background,(最後瀏覽日:2023/6/30)。 [7]包含:影像監控系統、智慧巴士、智慧路燈、空氣品質微型感測裝置、消費性網路攝影機、門禁系統等項目。行動應用資安聯盟(Mobile Application Security Alliance),IoT Q&A〈聯盟負責的物聯網資安檢測認證項目有哪些?〉,https://www.mas.org.tw/iot/questAndAnswer,(最後瀏覽日:2023/6/30)。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。