德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議:

  1. 促進企業內部及外部訂定相關準則
    例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。
  2. 提升透明度
    使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。
  3. 為全體利益使用相關技術
    人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。
  4. 開發安全的資料基礎
    資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。
  5. 解決機器偏差問題
    應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。
  6. 適合個別領域的具體措施和文件
    在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7985&no=55&tp=1 (最後瀏覽日:2025/08/20)
引註此篇文章
你可能還會想看
加拿大發布國家智財戰略強化國際競爭力

  2018年4月26日世界知識產權日(World Intellectual Property Day),加拿大政府發布新的國家智財戰略。透過提昇加拿大企業的智財意識與加強智財服務業者監管,促進加拿大的創新生態體系。這次加拿大的智財戰略以法制、意識與工具為三大重點,內容涵括推動修法消除法制障礙、推動國民智財意識提昇、提供智財交易平台等工具給企業運用。其中法制障礙特別強調加拿大政府將立法防止國外專利蟑螂惡意運用智慧財產權的行為,以保障其企業在國際的競爭力。   其實臺灣在2012年由於產業面臨國際競爭,行政院就制定有「國家智財戰略綱領」,針對智財透過創造、運用流通、保護及人才等面向,擬訂戰略重點執行為期4年的智財行動計畫,目標引導產學研提升智財競爭力。今年智財行動計畫已執行完畢,但未來前瞻發展仍需擬定我國智財發展的戰略,沒有戰略性的布局與智財保護,政府投注再多經費,也無法幫助企業增加在國際市場上的競爭力。   期待臺灣政府部門能夠參考國際上,包括加拿大的智財戰略做法,廣納產業、學界更多的好意見,規劃我國智財政策接下來的10步棋該怎麼下。

日本用老鼠複製人類腎臟

  日本慈惠醫科大學研究人員用人類幹細胞,植入實驗鼠胚胎中,培育出具有人基因的複製腎,能過濾尿液。   研究人員先把生成腎臟的神經營養因子基因植入骨髓含有的幹細胞,然後在實驗鼠胚胎未生成腎臟前,將幹細胞注入胚胎中可生成腎臟的部位。隨後,研究人員摘出胚胎中相當於腎臟的部分。經過六天的培養,這部分組織長出了讓腎臟發揮功能的腎單位及其周圍的腎間質。基因檢查結果確認該腎臟是由人的骨髓幹細胞生成。研究人員再將這一"複製腎"移植到其他實驗鼠的腹部,約二周時間後,"複製腎"生長到一百五十毫克。   利用骨髓幹細胞進行再生醫療,生成皮膚和軟骨等已經進入實用階段,但利用動物再生人類器官還沒有先例。參加研究的橫尾隆認為,從理論上說,用這種方法生成的器官不會發生排異反應。除腎臟外,這種方法還可用來生成胰腺和肝臟。

日本2021年修正《個人資料保護法》,整合個資法體系

  日本於2021年5月19日公布新修正之《個人資料保護法》(個人情報の保護に関する法律),並預計於2022年4月正式施行。修法重點如下: 一、法律形式及法律管轄一元化:現行日本個人資料保護法制依適用對象分為《個人資料保護法》、《行政機關個人資料保護法》(法律行政機関の保有する個人情報の保護に関する法律)、《獨立行政法人等個人資料保護法》(独立行政法人等の保有する個人情報の保護に関する法律)及各地方政府個人資料保護條例等不同規範,修法後將統一適用《個人資料保護法》,並受到個人資料保護委員會之監督管理。 二、整合醫療及學術領域之規範:目前醫療及學術機構因隸屬於公部門或私部門適用不同規範,修法後無論公私立醫院、大學等原則上均適用相同規範。 三、調整學術研究之豁免規定:基於學術研究自由為憲法保障之基本權,現行《個人資料保護法》明文規定學術研究一律排除適用本法規定,惟2019年日本取得《歐盟一般資料保護規則》(GDPR)適足性認定之範圍未包含學術研究,故修法調整豁免規定為例外情形排除適用,如變更利用目的、取得敏感性個人資料及提供予第三者之情形。 四、整合個人資料及匿名化資料之定義:修法將公部門與私部門對個人資料之定義,整合為包含「易於」與其他資料比對後得以識別特定個人之要件。而《行政機關個人資料保護法》所稱「去識別化資料」(非識別加工情報),與《個人資料保護法》所稱「匿名化資料」(匿名加工情報),修法後將統一稱為「匿名化資料」。   為銜接上述修法內容,日本個人資料保護委員會自2021年8月起陸續針對《個人資料保護法施行令》、《個人資料保護法施行規則》及個人資料保護法相關指引公開徵求意見,後續值得持續觀察日本個人資料保護法制發展。

美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

TOP