德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議:

  1. 促進企業內部及外部訂定相關準則
    例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。
  2. 提升透明度
    使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。
  3. 為全體利益使用相關技術
    人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。
  4. 開發安全的資料基礎
    資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。
  5. 解決機器偏差問題
    應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。
  6. 適合個別領域的具體措施和文件
    在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7985&no=55&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
新加坡就智慧國家方案提出策略性國家計畫

  新加坡政府科技局(Government Technology Agency of Singapore, 下稱 GovTech)在2017年8月21號提出智慧國家的5個策略性國家計畫,指出為了建立數位國家,政府將會更加注重基礎建設的整合途徑,未來將聚焦5項計畫: 國家數位身分(National Digital Identity)系統,使市民和工商業可以更加安全與便利的方式進行交易。未來的六個月,在現有的SingPass交易系統上, GovTech將會進行關於行動軟體代碼(software-token)試驗,並在五年後大量適用此種服務。 增進數位支付(e-Payments)功能。新加坡金融管理局(Monetary Authority of Singapore, MAS)將會與銀行和私部門合作,建立各種數位支付管道。例如簡化數位支付並布建統一銷售終端(Unified-Point-of-Sales, UPOS),預計將於18個月內設置25000個終端,使多種銷售方式可透過單一終端進行。 智慧國家感測器平台(Smart Nation Sensor Platform),加速感應器與其他物聯網的布建,使城市更加易居住與安全。GovTech將會建立智慧國家感測器平台,並增進基礎建設與分析能力,並與LTA合作目在未來18個月測試智慧聯網路燈站於選定的區域進行布建,五年內讓蒐集之數據提供工商業發展產品與服務供公眾使用。 建立智慧城市移動(Smart Urban Mobility)交通系統,包含已在2017年中建立的共通車隊管理系統(Common Fleet Management System),將使用數據和數位科技,包含AI和自駕車來增進公眾運輸系統。 生活的時刻(Moments of Life)服務,透過政府間數據共享,跨部門和各種政府相關的數位服務結合,提供市民個人化的數位服務。

日本與歐盟達成GDPR適足性認定之合意,預定於今年秋天完成相關程序

  日本個人情報保護委員會於5月31日與歐盟執行委員會,對於取得之個人資料跨境傳輸相互承認達成實質合意。歐盟今年5月施行之歐盟個人資料保護規則(European Union General Data Protection Regulation,GDPR)對於個人資料之跨境傳輸係採「原則禁止、例外允許」模式,因此只有在符合例外之情形下,個人資料才能進行跨境傳輸,而例外獲得許可的情形包括由企業自主採行符合規範的適當保護措施,或取得個資當事人明確同意等方式。此外,GDPR也規定對第三國或地區個人資料保護水平是否達到GDPR標準,為適足性認定制度,取得此一認定資格者,即可自由與歐盟間進行個人資料跨境傳輸。目前有瑞士等11個國家及地區取得認定,日本則尚未取得。   日本為了減輕企業的負擔,2016年7月個人情報委員會決定處理方針,以取得相互認定承認為目標;於2017年1月歐盟執行委員會政策文書發表,將日本列為適足性認定之優先國家,將持續進行雙方後續對話。自2016年4月自2018年5月為止累計對話協商53次。於2017年5月施行修正之個人資料保護法,新導入域外適用規定,並對於國外執行當局為必要資訊提供為相關規定。依據上述對話意見,今年2月14日審議擬定「個人資料保護法指引-歐盟適足性認定之個人資料傳輸處理編(個人情報の保護に関する法律についてのガイドラインーEU域内から十分性認定により移転を受けた個人データの取扱い編)」草案,於今年4月25日至5月25日完成草案預告及意見徵集程序,預定於今年7月上旬訂定發布。其後,將於今年秋天完成歐盟與日本間相互指定與認定程序。亦即,個人情報保護委員會基於個人資料保護法第24條規定,指定歐洲經濟區(EEA)為與日本有同等水準之個人資料保護制度之外國,而歐盟執行委員會依據GDPR第45條規定,認定日本為具備適足保護水準。相互認定後,日本與歐盟間得相互為個人資料傳輸,如有相互協力必要性發生時,個人情報保護委員會及歐洲執行委員會應相互協議以為解決。

歐洲個人資料保護委員會發布數位服務法與一般資料保護規則相互影響指引

「歐洲資料保護委員會」(European Data Protection Board, EDPB)於2025年9月12日發布《數位服務法》(Digital Services Act, DSA)與《一般資料保護規則》(General Data Protection Regulation, GDPR)交互影響指引(Guidelines 3/2025 on the interplay between the DSA and the GDPR)。這份指引闡明中介服務提供者(intermediary service providers)於履行DSA義務時,應如何解釋與適用GDPR。 DSA與GDPR如何交互影響? 處理個人資料的中介服務提供者,依據處理個資的目的和方式或僅代表他人處理個資,會被歸屬於GDPR框架下的控制者或處理者。此時,DSA與GDPR產生法規適用的交互重疊,服務提供者需同時符合DSA與GDPR的要求。具體而言,DSA與GDPR產生交互影響的關鍵領域為以下: 1.非法內容檢測(Illegal content detection):DSA第7條鼓勵中介服務提供者主動進行自發性調查,或採取其他旨在偵測、識別及移除非法內容或使其無法存取的措施。指引提醒,中介服務提供者為此採取的自發性行動仍須遵守GDPR要求的處理合法性,而此時最可能援引的合法性依據為GDPR第6條第1項第f款「合法利益」(legitimate interests)。 2.通知與申訴等程序:DSA所規定設通報與處置機制及內部申訴系統,於運作過程中如涉及個資之蒐集與處理,應符GDPR之規範。服務提供者僅得蒐集履行該義務所必須之個人資料,並應確保通報機制不以通報人識別為強制要件。若為確認非法內容之性質或依法須揭露通報人身分者,應事前告知通報人。同時,DSA第20條與第23條所規範之申訴及帳號停權程序,均不得損及資料主體所享有之權利與救濟可能。 3.禁止誤導性設計模式(Deceptive design patterns):DSA第25條第1項規範,線上平台服務提供者不得以欺騙或操縱其服務接收者之方式,或以其他實質扭曲或損害其服務接收者作出自由且知情決定之能力之方式,設計、組織或營運其線上介面,但DSA第25條第2項則宣示,線上平台提供者之欺瞞性設計行為若已受GDPR規範時,不在第25條第1項之禁止範圍內。指引指出,於判斷該行為是否屬 GDPR 適用範圍時,應評估其是否涉及個人資料之處理,及該設計對資料主體行為之影響是否與資料處理相關。指引並以具體案例補充,區分屬於及不屬於 GDPR 適用之欺瞞性設計模式,以利實務適用。 4.廣告透明度要求:DSA第26條為線上平台提供者制定有關廣告透明度的規範,並禁止基於GDPR第9條之特別類別資料投放廣告,導引出平台必須揭露分析之參數要求,且平台服務提供者應提供處理個資的法律依據。 5.推薦系統:線上平台提供者得於其推薦系統(recommender systems)中使用使用者之個人資料,以個人化顯示內容之順序或顯著程度。然而,推薦系統涉及對個人資料之推論及組合,其準確性與透明度均引發指引的關切,同時亦伴隨大規模及/或敏感性個人資料處理所帶來之潛在風險。指引提醒,不能排除推薦系統透過向使用者呈現特定內容之行為,構成GDPR第22條第1項的「自動化決策」(automated decision-making),提供者於提供不同推薦選項時,應平等呈現各項選擇,不得以設計或行為誘導使用者選擇基於剖析之系統。使用者選擇非剖析選項期間,提供者不得繼續蒐集或處理個人資料以進行剖析。 6.未成年人保護:指引指出,為了符合DSA第28條第1項及第2項所要求於線上平台服務中實施適當且相稱的措施,確保未成年人享有高度的隱私、安全與保障,相關的資料處理得以GDPR第6條第1項第c款「履行法定義務」作為合法依據。 7.系統性風險管理:DSA第34與35條要求超大型在線平台和在線搜索引擎的提供商管理其服務的系統性風險,包括非法內容的傳播以及隱私和個人數據保護等基本權利的風險。而指引進一步提醒,GDPR第25條所設計及預設之資料保護,可能有助於解決這些服務中發現的系統性風險,並且如果確定系統性風險,根據GDPR,應執行資料保護影響評估。 EDPB與其他監管機關的後續? EDPB的新聞稿進一步指出,EDPB正在持續與其監管關機關合作,以釐清跨法規監理體系並確保個資保護保障之一致性。後續進一步的跨法域的指引,包含《數位市場法》(Digital Markets Act, DMA)、《人工智慧法》(Artificial Intelligence Act, AIA)與GDPR的相互影響指引,正在持續制定中,值得後續持續留意。

哈佛研究者以私募基金展開人類胚胎複製

  哈佛大學的醫學研究人員最近公開表示,他們已經展開複製人類胚胎、創造幹細胞的工作,由於布希政府在數年前即已頒布禁令,禁止聯邦政府資助新的幹細胞系,故哈佛幹細胞研究所的這項計劃將以私人募集的基金進行。   人類胚胎幹細胞的研究一直具爭議性,因為抽取細胞需要破壞人類胚胎。哈佛幹細胞研究計劃以創造特定疾病的幹細胞系為目標,希望研發出多種不治之症的療法。哈佛大學認為這項計劃的潛在好處,大於人類生命神聖遭挑戰的關切,蓋其長期目標是,創造從病患細胞組織取得的胚胎幹細胞,修正基因缺陷,將修復細胞植回病患體內。校長薩默斯在聲明中說:「雖然我們了解且尊重反對此項研究者所持的信念,我們同樣誠摯地面對我們的信仰,相信攸關無數受苦孩童與成人生死的醫學需要,賦予這項研究繼續前進的正當性。」

TOP