德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議:

  1. 促進企業內部及外部訂定相關準則
    例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。
  2. 提升透明度
    使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。
  3. 為全體利益使用相關技術
    人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。
  4. 開發安全的資料基礎
    資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。
  5. 解決機器偏差問題
    應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。
  6. 適合個別領域的具體措施和文件
    在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7985&no=55&tp=1 (最後瀏覽日:2025/11/29)
引註此篇文章
你可能還會想看
美國先進製造國家計畫辦公室於今年(2015) 6月10日研提現況檢討報告與相關政策資料

  為檢視國內先進製造業復甦與計畫推進之近況,美國先進製造國家計畫辦公室(Advanced Manufacturing National Program Office, AMNPO)於今年(2015) 6月10日研提現況檢討報告與相關政策資料,該項報告主要可歸結「國內產業現況」、「計畫執行成效」與「法制組織」等重要面向 ,茲就該項報告之重點摘要如下: (一)國內先進製造產業現況檢視:   報告指出美國目前正喪失在先進產品領域全球領導地位,在進出口貿易呈現嚴重赤字,雖近年致力於先進製造之資源整合與共同研發等措施,然而,觀察基礎科研端到市場端仍存有落差。 (二)先進製造領域已設立45個研發創新中心:   研發創新中心為產業與學研機構共構之「區域應用性組織」,主要由學術研究聯盟、企業和區域管理機構所組成專注於扶持區域具經濟優勢之新興技術研發,發展在地技術能量。先進製造領域,截至目前為止,已設立45個研發創新中心。除透過研發創新中心之扶持外,另可透過中心之設立選定各該重點關鍵技術發展,間接培育美國各區域之先進製造技術之專業領域。美國境內研究型大學或非營利組織皆得提案申請,而獲選之區域創新研究機構可獲得聯邦政府5至7年資金補助,政府欲透過補助模式,扶持區域新創機構之自主運作與發展。而於七年發展階段後,該機構將形成財政自主,由該機構之行政委員會主導研發資金運用與分配。

IEA 發表「德國能源政策 2013 年檢閱報告」

聯合國推動「全球綠色新政」並倡導各國促進綠色投資及研發活動

  聯合國環境規劃署(UNEP)正式發表「全球綠色新政」(Global Green New Deal)報告,建議各國投入GDP1%(約7,500億美元)資助綠色環境建設及發展,除期使更落實綠色經濟倡議(Green Economy Initiative)內容外,並希望以此帶動綠領就業(Green Collar Job)及促進綠色研發活動蓬勃。     聯合國UNEP於2009年2月對外發表全球綠色新政報告,並倡導五大重要投資領域,包括以下: (1) 提昇各新舊建築物能源使用效率領域之投資。 (2) 再生能源(包括太陽能、風力、地熱能、生質能等)領域之投資。 (3) 永續交通運輸環境(包括氫能汽車、高速鐵路、快速捷運系統等)領域之投資。 (4) 全球性生態構成(包括潔淨水、森林、土壤等)基礎環境領域之投資。 (5) 永續農業(包括有機農產品)領域之投資。     聯合國UNEP並於研究報告中強調:綠色經濟轉向之根本驅動力在於導入相關綠色科技之解決方案,包括各種清潔生產製程、污染防治技術,以及管末和監控技術,涵蓋know-how、流程、商品、服務、設備、組織和管理等,均為綠色經濟蓬勃發展之關鍵環節。     而世界各國關於推動綠色新政投資之規劃行動,如歐盟於2008年11月29日通過經濟振興方案,總預算為2000億歐元(1.5%EU的GDP),方案內容涵蓋4大優先領域,亦即為民眾(people)、商業(business)、基礎建設及能源(infrastructure and energy)、研究與創新(research and innovation),歐盟也呼籲各國應多投入綠色科技研發活動。     而美國2009年2月通過之復甦與再投資法案(American Recovery and Reinvestment Act),亦將綠色新政涵蓋其中,其中編列61.3 billion美元投入「清潔、效率能源方案」,主要係投資於提升能源效率、發展潔淨能源及交通效率及科技研發等。     以外,日本政府於2009年2月亦指示著手研擬「綠色新政」規劃,,預計於6月後向首相提出建議書,以因應氣候變遷及經濟危機威脅等危機。而南韓則是於2009年1月宣布未來4年將投入50兆韓元推動「綠色新政」,並以此投資行動,刺激創造更多的綠色就業機會。

歐盟《歐洲資料戰略》

  歐盟執委會針對未來10年歐洲AI開發與開放資料運用方向等核心議題,於2020年2月19日公布一系列數位化政策提案,其中之一即為提出歐洲資料戰略(European Data Strategy)。本戰略提出資料開放共享政策與法制調適框架,宣示其目標為建構歐洲的資料單一市場(single market for data),視資料為數位轉型的核心,開放至今尚未被使用的資料。歐盟期待商界、研究者與公共部門等社群的公民、企業和組織,得透過跨域資料的蒐集與分析,改善決策的作成基礎或提升公共服務品質,為醫療或經濟等領域帶來額外利益,同時促進歐盟推動人工智慧發展及應用。   本戰略揭示了資料單一市場的建構框架,包含資料必須能在歐盟內與跨域流通並使所有人受益、全面遵守如個資保護、消費者保護與競爭法等歐盟相關規範、以及資料取用(access)和使用的規定,應平等實用且明確,並以之建立資料治理機制;同時,為在技術面強化歐洲數位空間之能力,以完善資料共享所需之資料基礎設施,應創建歐洲資料庫(European data pools),預備將來進行巨量資料分析與機器學習。在上述框架下,本戰略同時擬定了數個具體的措施與制度調修方向如下:(1)建構資料跨部門治理與取用之法規調適框架:包括於2020年第4季提出歐洲共同資料空間管理之立法框架,於2021年第1季提出高價值資料集(high-value data-sets),評估於2021年提出資料法(Data Act)以建構企業對政府或企業間的資料共享環境、調適並建立有利於資料取用之智慧財產權與營業秘密保護框架;(2)強化歐洲管理、處理資料之能力與資料互通性:建構資料共享體系結構並建立共享之標準及治理機制、於2022年第4季啟動歐洲雲端服務市場並整合所有雲端服務產品、於2022年第2季編纂歐盟雲端監管規則手冊;(3)強化個人有關資料使用之權利:從協助個人行使其所產出資料相關權利之角度,可能於資料法中優化歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第20條之資料可攜權,如訂定智慧家電或穿戴裝置之資料可讀性格式;(4)建構戰略領域與公共利益領域之歐盟資料空間:針對戰略性經濟領域與攸關公共利益的資料使用需求,開發符合個資保護與資安法令標準之資料空間,主要用於保存製造業、智慧交通、健康、財務、能源、農業、公共管理等領域之資料。

TOP