歐洲網路暨資訊安全局發布「重要資訊基礎設施下智慧聯網之安全基準建議」

  歐洲網路暨資訊安全局(European Union Agency for Network and Information Security, ENISA)於2017年11月20號發布了「重要資訊基礎設施下智慧聯網之安全基準建議」。該建議之主要目的乃為歐洲奠定物聯網安全基礎,並作為後續發展相關方案與措施之基準點。

  由於廣泛應用於各個領域,智慧聯網設備所可能造成之威脅非常的廣泛且複雜。因此,了解該採取與落實何種措施以防範IOT系統所面臨之網路風險非常重要。ENISA運用其於各領域之研究成果,以橫向之方式確立不同垂直智慧聯網運用領域之特點與共通背景,並提出以下可以廣泛運用之智慧聯網安全措施與實作:

  (一) 資訊系統安全治理與風險管理
  包含了與資訊系統風險分析、相關政策、認證、指標與稽核以及人力資源相關之安全措施。

  (二) 生態系管理
   包含生態系繪製以及各生態系的關聯。

  (三) IT安全建築
   包含系統配置、資產管理、系統隔離、流量過濾與密碼學等資安措施。

  (四) IT安全管理
  帳戶管理與資訊系統管理之相關安全措施。

  (五) 身分與存取管理
  有關身分確認、授權以及存取權限之安全措施。

  (六) IT安全維護
  有關IT安全維護程序以及遠端存取之安全措施。

  (七) 偵測
  包含探測、紀錄日誌以及其間之關聯與分析之安全措施。

  (八) 電腦安全事件管理
  資訊系統安全事件分析與回應、報告之資安措施。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 歐洲網路暨資訊安全局發布「重要資訊基礎設施下智慧聯網之安全基準建議」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7987&no=67&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
日本制定民間個人健康紀錄業者蒐集、處理、利用健康資料之基本指引草案

  日本厚生勞動省、經濟產業省和總務省共同於2021年2月19日公布「有關民間個人健康紀錄(Personal Health Record, PHR)業者蒐集、處理、利用健康資料之基本指引」(民間PHR事業者による健診等情報の取扱いに関する基本的指針)草案,檢討民間PHR業者提供PHR服務之應遵守事項,希望建立正確掌握和利用個人、家族健康診斷或病例等健康資料之電子紀錄制度。   本指引所稱之「健康資料」,係指可用於個人自身健康管理之敏感性個人資料,如預防接種、健康診斷、用藥資訊等;而適用本指引之業者為蒐集、處理、利用上開健康資料並提供PHR服務之業者。根據指引規定,PHR業者應針對資訊安全對策、個人資料處理、健康資料之保存管理和相互運用性及其他等4大面向採取適當措施。首先,在資訊安全對策部份,業者需取得風險管理系統之第三方認證(如資訊安全管理系統制度(ISMS));其次,針對個人資料,業者應制定隱私政策和服務利用規約,並遵守個資法規定;然後,為確保健康資料之保存管理和相互運用性,系統應具備雙向資料傳輸之功能;最後,本指引提供檢核表供業者自行檢查,業者亦應在網站上公佈自行檢查結果。

美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統

紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。

ENUM架構之初步研究-以奧地利ENUM Trial為例

英國國家醫療服務體系(NHS)公布國家資料退出(Opt-out)操作政策指導文件

  個人健康資料共享向為英國資料保護爭議。2017年英國資訊專員辦公室(ICO)認定Google旗下人工智慧部門DeepMind與英國國家醫療服務體系(NHS)的資料共享協議違反英國資料保護法後,英國衛生部(Department of Health and Social Care)於今年(2018)5月修正施行新「國家資料退出指令」(National data opt-out Direction 2018),英國健康與社會照護相關機構得參考國家醫療服務體系(NHS)10月公布之國家資料退出操作政策指導文件(National Data Opt-out Operational Policy Guidance Document)規劃病患退出權行使機制。   該指導文件主要在闡釋英國病患退出權行使之整體政策,以及具體落實建議作法,例如: 退出因應措施。未來英國病患表示退出國家資料共享者,相關機構應配合完整移除資料,並不得保留重新識別(de-identify)可能性; 退出權行使。因指令不溯及既往適用,因此修正施行前已合法處理提供共享之資料,不必因此中止或另行進行去識別化等資料二次處理;此外,病患得動態行使其退出權,於退出後重新加入國家資料共享體系;應注意的是,退出權的行使,採整體性行使,亦即,病患不得選擇部分加入(如僅同意特定臨床試驗的資料共享); 例外得限制退出權情形。病患資料之共享,如係基於當事人同意(consent)、傳染病防治(communicable disease and risks to public health)、重大公共利益(overriding public interest)、法定義務或配合司法調查(information required by law or court order)等4種情形之一者,健康與社會照護相關機構得例外限制病患之退出權行使。   NHS已於今年9月完成國家資料退出服務之資料保護影響評估(DPIA),評估結果認為非屬高風險,因此不會向ICO諮詢資料保護風險。後續英國相關機構應配合於2020年5月前完成病患資料共享退出機制之建置。

TOP