美國倡建無人機系統整合先導計畫

刊登期別
第30卷,第2期,2018年02月
 
隸屬計畫成果
自主研究
 

  考量無人機系統與國家空域系統及有人駕駛飛機的有效協作,除能提升產業效能與生產力外,同時也強化國家公領域安全的管理。基此,美國總統川普遂發布總統備忘錄倡議建立無人機系統整合先導計畫,期能透過該計畫促進創新應用,並以公私協力的方式進行無人機系統與國家空域系統之整合。

※ 美國倡建無人機系統整合先導計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7999&no=64&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
新加坡智財申請政策介紹

新加坡智財申請政策介紹 科技法律研究所 法律研究員 羅育如 2014年10月31日 壹、前言   新加坡政府於2013年3月份提出IP (Intellectual Property) Hub Master Plan 10年期計畫[1],目標是成為亞洲智財匯流中心。本文針對該計畫中的智財申請政策進行觀察,目的在於了解新加坡政府如何運用政府資源,提供世界級的服務,建構吸引智財申請的環境。 貳、重點說明   IP 擁有者通常會依據商業利益來考量要在哪些國家申請智財權,但因為新加坡內需市場規模不大,故更需要由新加坡政府提供誘因,以吸引在新加坡境內提出IP註冊。為此,新加坡政府提出相關政策包括1.修改專利法提高專利品質,同時提升專利審查人員能力;2.專利審查高速網路,以下詳細說明。 一、專利法修法以及專利審查人員訓練計畫 (一)新加坡專利法修法   新加坡專利法於2011年開始修法,2014年2月14日開始實施新法,其中,最大差異在新法將新加坡智慧財產申請系統由「自我評估制度(patent self-assessment system)」轉為「實質審查制度(positive grant system)」。在舊有系統下,申請人只需要自行宣稱新穎性即可取得專利權。然而,此次修正後將改採「實質審查」制度,會增設專利審查員審查專利性,檢索報告亦須說明請求項是否具備前述專利性。此一修正之目的在於,希望能藉以提升新加坡核准專利申請案件水準。 (二)提升專利審查人員技術檢索和審查能力   配合前述專利法修法,新加坡智慧局即需要建構過去缺乏之實質審查的專利審查員。因此,提出審查委員訓練計畫,包含法規及專利領域的深入了解以及資深審查委員在職輔導等,希望審查委員能提供高品質及有效的檢索及審查結果。   新加坡智慧財產局投資5千萬星元(約合新台幣1億2千萬元),用以增進審查人員在重要技術領域的檢索和審查能力,以吸引企業在新加坡註冊IP。包括自2012年9月起,派出第一批專利檢索暨審查團隊(search and examination team;S&E)送往歐洲專利局及日本特許廳接受訓練[2]。2013年5月28日成立專利審查辦公室,2014年8月29日新加坡智慧局公布專利審查員團隊為80人規模(第一波招募40人;第二波招募40人),其中95%擁有博士學位,技術領域包括生技醫療、奈米材料、半導體以及資訊通訊技術 ,25%擁有英文/中文雙語能力。除此之外,今年9月也已完成第三波專利審查員招募作業。 二、專利審查高速網路(patent prosecution highway network;PPH)   新加坡智慧局現在與美國、日本、南韓、墨西哥以及中國專利局皆已建立專利審查高速網路(patent prosecution highway network;簡稱PPH),可加速新加坡專利申請人在海外的申請程序。   除此之外,2014年11月1日起,新加坡成為全球專利審查高速(GPPH)網路的一部分,GPPH允許來自全球的17個參與智慧財產權局彼此分享專利檢索和審查結果,包括美國、加拿大、澳大利亞、英國、丹麥、芬蘭、俄羅斯、匈牙利、西班牙、瑞典、葡萄牙、以色列、挪威、冰島、日本、韓國以及北歐。透過GPPH,新加坡擁有的PPH夥伴數量將從現在的5個增加到19個。   新加坡政府認為PPHs網絡,將促使新加坡成為優質專利申請註冊的首選之地。申請人將可在新加坡迅速取得具成本效益及優質的專利審查(S&E)報告,進而加速在其他國家智財局的專利舉發程序。 參、事件評析   新加坡政府了解新加坡國內市場小,很難吸引IP擁有者在新加坡註冊智財權,但新加坡政府還是願意花費大量的政府資源修改專利法、提升專利實質審查能力、加入PPHs,其最大的市場動力以及願景來自於東南亞智財市場。目前東南亞各國的專利制度都較新加坡起步慢,如果新加坡政府可提供高質量的智財審查服務並透過與東南亞國家之間簽署類似PPH的協定,新加坡智財局的智財服務可遍及整個東南亞國家,東南亞各國不需要自行設立相關的審查制度以及投入資源,僅需仰賴新加坡智財局即可,這樣新加坡的智財市場就不僅限新加坡國內,而是擴及至整個東南亞國家。 [1]IP STEERING COMMITTEE, Intellectual Property (IP) Hub Master Plan─Developing Singapore as a Global IP Hub in Asia (2013) http://www.ipos.gov.sg/Portals/0/Press%20Release/IP%20HUB%20MASTER%20PLAN%20REPORT%202%20APR%202013.pdf(最後瀏覽日2014/10/15) [2]2012年7月11日,日本專利局與新加坡智慧財產局於新加坡簽署兩局間合作備忘錄。目前日本專利局與新加坡間的"簡化改進的實質審查"(Modified Substantive Examination, MSE)和"專利審查高速公路"(The Patent Prosecution Highway, PPH)專案試行等,也為兩局在專利審查相關的積極合作。資訊來源:http://www.ipos.gov.sg/News/Readnews/tabid/873/articleid/200/category/Press%20Releases/parentId/80/year/2012/Default.aspx(最後瀏覽日期:2014/10/17)

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

新加坡個人資料保護委員會針對企業蒐集、使用、揭露永久居留證(NRIC)號碼提出新的諮詢指引

  考量各行各業的從業習慣及民眾對企業蒐集、使用、揭露永久居留證(National Registration Identification Card, NRIC)號碼之看法,新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2017年11月提議修改個人資料保護法的諮詢指引(Advisory Guidelines on the Personal Data Protection Act ),明確界定企業蒐集、使用、揭露NRIC及其號碼之範圍。   依據舊的諮詢指引,新加坡個人資料保護法允許企業在基於合理特定目的並依法獲得當事人有效同意之情況下,蒐集、使用或揭露NRIC號碼。因此,不少企業活動習慣蒐集利用民眾的NRIC號碼,包括零售商店所舉辦的抽獎活動。然而,在PDPC提出新的諮詢指引後,企業可蒐集利用NRIC號碼的情況受到大幅限縮。   由於NRIC號碼與個人資訊息息相關且具不可取代性,無差別地蒐集利用將增加資料被用以從事非法活動之風險,故新的諮詢指引闡明,原則上企業不應蒐集、使用或揭露個人NRIC號碼或複印NRIC,除非有下列兩種例外情況之一:(一)法律要求;(二)為確實證明當事人身分所必要。第一種例外情況,雖因法律要求無須取得當事人同意,但企業仍應踐行告知義務,使當事人知悉NRIC號碼被蒐集、使用或揭露之目的,並確保企業內已採行適當安全措施,防止NRIC號碼被意外洩漏。第二種例外情況則仍須就NRIC號碼的蒐集、使用或揭露取得當事人同意,除非符合個人資料保護法規定下毋庸取得當事人同意之例外(如急救等緊急狀況)。   此外,PDPC針對得蒐集、使用或揭露NRIC號碼或複印NRIC的情況,以情境案例方式於諮詢指引中說明供企業參考,另給予12個月的審視期間,使企業得修正組織內部政策並尋找可行替代方案。

何謂德國「中小企業創新核心計畫」(Zentrales Innovationsprogramm Mittelstand)?

  中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年1月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。   ZIM計畫中的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。在此基礎上,ZIM計畫中分為以下三種補助類型: 1.ZIM個人計畫(ZIM-Einzelproejkte):補助個別經營企業的研發計畫。 2.ZIM合作計畫(ZIM-Kooperationsprojekte):補助兩個或兩個以上的企業或研發機構之共同研發計畫。 3.ZIM網狀型合作計畫(ZIM-Kooperationsnetzwerke):補助在創新網狀架構下至少六個中小企業合作之全面性研發計畫。

TOP