歐盟資料保護工作小組修正通過「個人資料侵害通報指引」
資訊工業策進會科技法律研究所
法律研究員 李哲明
2018年3月31日
壹、事件摘要
因應歐盟「通用資料保護規則」(The General Data Protection Regulation,或有譯為一般資料保護規則,下簡稱GDPR)執法即將上路,針對個人資料侵害之通報義務,歐盟資料保護工作小組(Article 29 Data Protection Working Party, WP29)特於本(2018)年2月6日修正通過「個人資料侵害通報指引」(Guidelines on Personal data breach notification under Regulation 2016/679),其中就GDPR所規範個資侵害之定義、對監管機關之通報、與個資當事人之溝通、風險及高風險評估、當責與紀錄保存及其他法律文件所規定之通報義務等,均設有詳盡說明與事例。
貳、重點說明
一、何謂個資侵害?個資侵害區分為哪些種類?
依據GDPR第4條(12)之定義,個資侵害係指:「個人資料因安全性之侵害所導致意外或非法之毀損、喪失、修改、未經授權之揭露、存取、個資傳輸、儲存或其他處理。」舉例來說,個人資料之喪失包括含有控制者(controller)顧客資料庫的備份設備之遺失或遭竊取。另一例子則為整份個資的唯一檔案遭勒索軟體加密,或經控制者加密,但其金鑰已滅失。依據資訊安全三原則,個資侵害之種類區分為:
二、何時應為通知?
按GDPR第33條(1)之規定,當個資侵害發生時,在如果可行之情況下,控制者應即時(不得無故拖延)於知悉侵害時起72小時內,依第55條之規定,將個資侵害情事通報監管機關。但個資侵害不會對自然人之權利和自由造成風險者,不在此限。倘未能於72小時內通報監管機關者,應敘明遲延之事由。
三、控制者「知悉」時點之判斷標準為何?
歐盟資料保護工作小組認為,當控制者對發生導致個人資料侵害的安全事件達「合理確信的程度」(reasonable degree of certainty)時,即應視為其已知悉。以具體事例而言,下列情況均屬所謂「知悉」:
故應以控制者意識到該密鑰遺失時起為其「知悉」時點。
值得注意的是,在經個人、媒體組織、其他來源或控制者自我檢測後,控制者或將進行短暫調查,以確定是否發生侵害之事實。於此調查期間內所發現之最新侵害情況,控制者將不會被視為「知悉」。然而,控制者應儘速展開初步調查,以形成是否發生侵害事故之合理確信,隨後可另進行更詳盡之調查。
四、共同(聯合)控制者之義務及其責任分配原則
GDPR第26條針對共同控制者及其如何確定各自之法遵義務,設有相關規定,包括決定由哪一方負責遵循第33條(對主管機關通報)與第34條(對當事人通知)之義務。歐盟資料保護工作小組建議透過共同控制者間之契約協議,約明哪一方係居主要地位者,或須負責盡到個資侵害時,GDPR所定之通知義務,並載於契約條款中。
五、通報監管機關與提供資訊義務
當控制者通報監管機關個資侵害情事時,至少應包括下列事項
(GDPR第33條(3)參照):
以上乃GDPR要求通報監管機關之最基本事項,在必要時,控制者仍應盡力提供其他細節。舉例而言,控制者如認為其處理者係個資侵害事件之根因(root cause),此時通報並指明對象即可警示委託同一處理者之其他控制者。
六、分階段通知
鑒於個資事故之性質不一,控制者通常需進一步調查始能確定全部相關事實,GDPR第33條(4)爰設有得分階段通知(notification in phases)之規定。凡於通報時,無法同時提供之資訊,得分階段提供之。但不得有不必要之遲延。同理,在首次通報後之後續調查中,如發現該事件業已受到控制且並未實際發生個資侵害情事,控制者可向監管機關為更新。
七、免通報事由
依據GDPR第33(1)條規定,個資侵害不會對自然人之權利和自由造成風險者,毋庸向監管機關通報。如:該遭洩露之個人資料業經公開使用,故並未對個人資料當事人構成可能的風險。
必須強調的是,在某些情形下,未為通報亦可能代表既有安全維護措施之缺乏或不足。此時監管機關將可能同時針對未為通報(監管機關)或通知(當事人),以及安全維護措施之缺乏或不足,以違反第33條或(及)34條與第32條等獨立義務規定為由,而依第83條4(a)之規定,併予裁罰。
參、事件評析
一、我國企業於歐盟設有分支機構或據點者,宜指派專人負責法遵事宜
揆諸GDPR前揭規定,當個資侵害發生時,控制者應即時且不得無故拖延於知悉時起72小時內,將個資侵害情事通報監管機關。未能履踐義務者,將面臨最高達該企業前一會計年度全球營業額之2%或1千萬歐元,取其較高者之裁罰。我國無論金融業、航運業、航空運輸業、電子製造業及進出口貿易業者等,均或有於歐盟成員國境內或歐洲經濟區(European Economic Area)當地設立子公司或營業據點。因此,在GDPR法遵衝擊的倒數時刻,指派具瞭解GDPR規定、當地個資隱私法遵規範、擅長與隱私執法機構溝通及充要語言能力者專責法遵業務實刻不容緩。蓋此舉可避免我國企業母公司鞭長莫及,未能及時處置而致罹法典之憾。
二、全面檢視個資業務流程,完備個資盤點與風險評鑑作業,掌握企業法遵現況
企業應全面檢視業務流程,先自重要核心業務中析出個資作業流,搭配全面個資盤點,並利用盤點結果進行風險評鑑,再針對其結果就不同等級之風險採行相對應之管控措施。此外,於全業務流程中,亦宜採行最小化蒐集原則,避免蒐集過多不必要之個人資料,尤其是GDPR所定義之敏感個資(如:種族、民族血統、政治觀點、宗教信仰、哲學信仰、工會會員資格等個人資料,及遺傳資料的處理,用於識別特定自然人之生物識別資料、健康資料、性生活、性取向等)或犯罪前科資料,俾降低個人資料蒐集、處理、利用、檔案保存及銷燬之全生命週期流程中的風險。此舉亦契合我國個人資料保護法第5條所揭櫫之原則。
三、立法要求一定規模以上之企業須通過個資隱私法遵第三方認(驗)證,並建置認證資訊公開平台
鑒於國際法遵衝擊以及隱私保護要求之標準線日漸提升,我國企業除自主導入、建置並維運相關個資保護與管理制度以資因應,更有賴政府透過法令(如:修正個人資料保護法)強制要求一定規模以上之企業通過第三方專業驗證,俾消弭風險於日常準備之中。蓋我國具一定規模以上企業,無論其係屬何種業別,一旦違反國際法遵要求,遭致鉅額裁罰,其影響結果將不僅止於單一企業,更將嚴重衝擊該產業乃至於國家整體經貿發展。職是,採法律強制要求企業定期接受獨立、公正及專業第三方認(驗)證,咸有其實益性與必要性。
美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
大倫敦政府推動城市資料市集,期尋求資料利用及隱私保護間之平衡,建立民眾對資料市集之信賴資料利用之層面越來越廣,且無論是基於商業或公益目的,產生越來越多難題。穿戴式裝置及物聯網的發展,亦使得資料之蒐集利用及界線等問題更顯其重要性。有鑑於此,大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「倫敦城市資料策略」(London City Data Strategy),積極推動「城市資料市集」(City Data Market),期將倫敦打造成世界首屈一指的智慧城市。 增加大眾對資料市集之信賴並減少疑慮乃「倫敦城市資料策略」之一環,近年在英國有一系列新法上路,除新的歐盟資料保護規範(GDPR)外,英國國內有關「開放銀行」(open banking)之新規範,以及已有能源及電信公司參與之MiData initiative等,上述機制均為促使個人更容易掌握其個資被利用之狀況。 大倫敦政府亦推動「倫敦資料交易」(London Data Exchange),大眾可利用此一機制掌握其個資流向。其中有關建置新的數位符號(digital tokens of proof),使民眾未來可利用此等符號證明符合特定資格,例如在道路受檢時,毋須拿出駕照說明個人姓名、地址、出生年月日等資料,利用該等符號,便可判定符合駕駛年齡。 近期,大倫敦政府透過資料科學合作夥伴(Data Science Partnership)推動資料科學倫理架構(Framework for Data Science Ethics),著手研究民眾對資料交易新機制的反應,試圖在資料利用與法律和道德問題間尋求平衡。
美國「國家製造創新網絡智慧財產指南」美國之「國家製造創新網絡智慧財產指南」(Guidance on Intellectual Property: National Network for Manufacturing Innovation) 係由先進製造國家計畫辦公室(Advanced Manufacturing National Program Office, AMNPO)於2015年3月公布。本指南係就智財策略之擬定,向製造創新之機構提供相關原則與彈性的框架,並同時釐清關鍵之智慧財產權利。此所稱之製造創新機構,係指2014年復甦美國製造與創新法(Revitalize American Manufacturing and Innovation (RAMI) Act of 2014)第34條(c)項所界定之機構,亦即為因應先進製造相關挑戰並協助製造業保持與擴展工業產品與就業機會之公私合營機構。 「國家製造創新網絡智慧財產指南」大別為9類共14項原則:(1)機構層級之智慧財產管理;(2)專案層級之智慧財產管理;(3)智慧財產所有權;(4)機構研發之智慧財產(Institute-Developed Intellectual Property, IDIP)權利;(5)非機構研發之智慧財產權利;(6)基礎智慧財產;(7)資料權利與管理;(8)出版權;(9)政府權利。以資料權利與管理為例,該類之下的第一項原則要求機構應研擬符合出口管制法規之資料計畫,並在計畫中界定與區分機構內部資料之類型,以及為維持機密性與網路安全所需之資料近用與管控。 我國於2015年9月公布「行政院生產力4.0發展方案」,發展方案於「掌握關鍵技術自主能力」之主策略下,由經濟部技術處主政推動成立「台灣生產力4.0研發夥伴聯盟(Taiwan Productivity 4.0 Partnership)」,透過政府民間之合作提升關鍵技術自主能力的同時,智慧財產權利相關配套措施自屬重要。
數位模擬分身(Digital Twin)數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。 於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。