美參議員盧比歐推動禁止與中國交易敏感科技之法案

  美國共和黨參議員盧比歐(Marco Rubio),亦為「美國國會及行政當局中國委員會」(Congressional-Executive Commission on China,簡稱CECC)之主席,於2018年5月宣布一項針對中國的立法——「美中公平貿易執行法」(Fair Trade with China Enforcement Act)。該法案以保護國家安全為目的,成為禁止美中兩國交易「敏感科技」之法源,同時,更提高課徵跨國公司來自中國的所得稅,藉以箝制中國竊取美國智慧財產。

  而為因應中國國務院所提「中國製造2025」戰略計畫,其重點發展科技——機器人、航太、潔淨能源車(robotics, aerospace and clean-energy cars),該法案亦對中資持有美國研發製造上揭科技之公司的持股權予以限制。除此之外,該法更將禁止美國政府及其包商購買中國華為(Huawei)、中興通訊(ZTE)兩間公司的任何電信通訊設備或服務;美國國會和美國總統川普均指稱兩間公司會透過產品暗中監看美國,而施壓美國私人企業亦勿販售兩公司產品。

  也許正如盧比歐參議員對外發表「美中公平貿易執行法」時所言,當今如何回應中國日益劇增對國家安全、竊取敏感科技之威脅,實為地緣政治(geopolitical)待解關鍵。

相關連結
相關附件
你可能會想參加
※ 美參議員盧比歐推動禁止與中國交易敏感科技之法案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8038&no=16&tp=1 (最後瀏覽日:2026/01/27)
引註此篇文章
你可能還會想看
德國發布國家資料戰略─《透過資料利用取得進展》

2024年德國預計制訂或修正多部法規,以達成2023年8月公布的德國資料戰略《透過資料利用取得進展》(Fortschritt durch Datennutzung)文件中所設定的目標。該戰略由內政部、經濟與氣候行動部、數位與交通部聯合訂定,規劃德國資料政策與法規的工作進程,以期打破資料封閉的現狀、拓展資料應用的範圍。 德國資料戰略目標與重點摘要如下: 1.更多的資料: (1)公部門資料:藉由統整跨部門的資料增加資料的可近用性,並透過新訂法規提升資料近用機會,包括《交通資料法》(Mobilitätsdatengesetz)確保交通資料的品質和使用規則、《聯邦透明度法》(Bundestransparenzgesetz)作為取得政府資料的法源依據、《研究資料法》(Forschungsdatengesetz)簡化科研資料的取得,以及為增加健康資料二次利用起草的《健康資料利用法》。 (2)私部門資料:德國政府將訂定並提供資料共享之契約範本,以降低資料的交易、操作成本,並評估增修公平競爭相關法規來協助企業間的資料合作。另將新訂《員工資料保護法》(Beschäftigtendatenschutzgesetz),重整散於歐洲人權法院及德國國內與員工資料相關之規範。 2.更好的資料:德國將積極參與國際資料標準訂定與遵循,確保資料的品質、互操作性,以及標準化的資料描述。相關工作包括草擬關於業者使用cookie等數位追蹤技術如何取得使用者同意的管理規範,並將依歐盟準則評估是否訂定不法重新識別之刑責;另外預計建立文化、農業等主題資料室用以協助政府決策。 3. 資料利用和資料文化:為使資料可持續地利用與發展,政府機關方面將設置資料專責人員,並在以政府資料訓練大型語言模型技術時由新設的資料諮詢中心協助。公民數位能力方面,將於STEM 2.0教育計畫中規劃培育資料概念,促進未來社會發展出更多樣的資料應用機會。 德國資料戰略涉及政府、企業、研究單位和公民各層面,顯示資料的重要性逐漸成為德國重大的課題,亦是我國在建立資料治理時如何確保資料品質、交換義務與使用規則的參考方向。

歐盟執委會發布關於歐洲境內資料流監控之新研究

  歐盟執委會(The EU Commission)於2022年2月3日發布了一項研究,其繪製並預估歐盟27個成員國以及冰島、挪威、瑞士和英國等國家彼此之間的主要雲端基礎設施的資料流量。該研究概述了各級產業、位置、企業規模和雲端服務類型的雲端資料流入和流出的流量和類型。政策、決策者、商業領袖與公共行政部門可以將其作為參考,以支持對未來貿易協定、工業決策和雲端投資的決策。   在歐盟的歐洲資料戰略中,認識到獲取有關資料流的經濟情報的戰略重要性,因此提出了資料流戰略分析框架的發展。為了實現這一關鍵行動,歐盟執委會開展了上述關於繪製資料流的研究,首次開發和測試了一種全新、自我維持與可複製的方法,從而產生了資料流可視化工具,用於測量、映射和分析歐洲31個國家與地區的各級產業、地理和企業規模的雲端資料流。而該資料流可視化工具中顯示的資料預計將每年更新一次。使用的資料收集來源從官方統計資料等主要來源到調查和訪談等次要來源。   該工具得以讓歐盟執委會: 一、繪製和估計歐盟27個成員國(即歐盟內部資料流)和冰島、挪威、瑞士和英國(即歐盟外資料流)的雲端計算領域主要資料流的數量 二、預測至2030年的資料流出 三、分析各產業、公司規模和雲端服務類型的資料流量   該研究顯示2020年最大的資料流來自醫療衛生產業,而德國的資料流入量最大。該報告還估計,到2030年,來自歐洲企業的資料流量將是2020年的15倍。   作為資料流市場關鍵層面之一,透過進一步調查資料趨勢,將協同即將出現的資訊法案打造一個更加生動、動態和流動的雲端市場。

由AOL LLC and PLATFORM-A, INC. v. ADVERTISE.COM, INC. 案看網域名稱與商標名稱爭議

  2009年10月19日,美國線上公司AOL LLC and Platform-A, Inc. (American Online, 簡稱AOL)再次於美國聯邦加州中區地方法院 (US California Central Federal District Court)向一家提供美國線上行銷廣告的公司- ADVERTISE.COM公司,提出商標侵權訴訟。     本案原告- AOL早於2009年8月17日即向美國東維吉尼亞地方法院提出商標侵權訴訟,主張ADVERTISE.COM公司所使用advertise.com之網域名稱,除侵害AOL已註冊的Advertising.com,包含通用文字- advertising.com及設計過A之圖形,及申請中的AD.COM商標權外,也違反了不公平競爭法及維吉尼亞商事法。唯,10月初,東維吉尼亞地方法院法官提出有利於ADVERTISE.COM公司之意見,認為AOL企圖以其所註冊之商標- (A)dvertising.com,來阻止其他競爭公司在網路世界使用任何有關advertise文字的作法,係壟斷網路上所有線上廣告行銷市場;故,AOL被迫於10月將本件訴訟案轉向美國聯邦加州中區地方法院提出。     目前尚無對本案的意見,將待本案之後續發展,才能暸解商標權人所註冊的圖形商標中,若包含經設計的圖案及通用的文字時,是否就取得圖形當中通用文字的專用權,並可向其他競爭者主張,任何使用所註冊的商標的一部分,包含網域名稱中的文字,也是商標侵害的一種型態;如此,可能將導致擴張商標權的保障範圍。

初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵

初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要   於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2]   此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3]   綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明   承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷   車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。   承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。   對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動   根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。   然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析   綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。   據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。

TOP