日本國土交通省於2017年2月修正《道路運輸車輛安全基準》第55條第1項、第56條第1項及第57條第1項規定之告示,放寬車輛安全基準規定,期望自動駕駛實驗能順利展開。惟在各種自動駕駛實驗中,遠距型自動駕駛系統是透過電信通訊技術,從遠距離外操作車輛行駛,儘管修法後已放寬安全基準規定,但其仍與現行以車內有駕駛為前提而訂定之《道路運輸車輛安全基準》相距甚遠,想一律判斷其符合安全基準有所困難。據此,為使遠距型自駕系統道路實驗能夠順利進行,國土交通省於2018年3月30日創設「搭載遠距型系統自駕車基準緩和認定制度」,明確規定遠距型自駕系統實施道路實驗所需各項手續。
「搭載遠距型系統自駕車基準緩和認定制度」規定項目包括︰申請放寬基準之對象、申請者、申請書及繳交文件、審查項目、條件及限制、基準放寬之認定、車體標示、行政處分等。
本文為「經濟部產業技術司科技專案成果」
隨著越來越多學校使用線上教育技術產品發展教學課程,並透過第三方服務提供者之技術蒐集學生的學習進度等相關資訊,資訊洩漏、駭客入侵、敏感資訊誤用或濫用等問題也因應而生。於2014年9月30日,加州州長Jerry Brown宣布幾項對加州居民隱私保護具有重要突破的法案,其中最引人關注的便是編號SB1177號法案,又稱學生線上個人資料保護法案(the Student Online Personal Information Protection Act,簡稱SOPIPA)。 SOPIPA禁止K-12學生線上教育服務經營者(operator)為下列行為,包括:(一)禁止線上教育服務經營者利用因提供服務所得之個人資料為目標行為(targeted marketing)、(二)禁止線上教育服務經營者基於非教育目的,運用因提供服務所得之個人資料為學生資料之串檔、(三)販賣學生之資訊、以及(四)除另有規定,禁止披露涵蓋資訊(covered information)。所稱之涵蓋資訊係指由K-12教育機構之雇員或學生所提供或製作之個人化可識別資訊(personally identifiable information),或是線上教育服務經營者因提供服務所得之描述性或可識別之資訊(descriptive or identifiable information)。 此外,SOPIPA線上教育服務經營者應採取適當安全的維護措施,以確保持有之涵蓋資訊的安全。同時,線上教育服務經營者應在有關教育機構的要求下,刪除學生之涵蓋資訊。 SOPIPA預計於2016年1月1日生效,將適用於與K-12學校簽有契約之大型教育技術與雲端服務提供者,同時也將適用於未與K-12學校簽署契約,但為該學校所使用之小型K-12技術網站、服務或APP等等。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
美國提出個人資料安全及外洩通報法草案華盛頓特區於今〈2010〉年8月5日由阿肯薩州及維及尼亞州參議院議員Pryor及John Rockefeller所倡議之「個人資料安全及外洩通報法」〈Data Security and Breach Notification Act of 2010〉,其旨趣,在於統一美國各州不同個資外洩通報法,並嘗試為消費者個人資料之安全及隱私設定全國性的標準。 Pryor法案曾於2007年提出,惟當時未能通過,其立法緣由係為處理美國各州、聯邦及國際間政府對個資安全與日俱增之重視。其規範內容,在要求處理及儲存消費者私人資訊,諸如「社會安全碼」〈social security numbers〉之企業,一旦發生資料外洩事件,需對國家提出通報,如該事件對消費者產生現實的「身分盜竊」〈identity theft〉或「帳戶詐欺」〈account fraud〉風險,則應於發現個資外洩六十日內通知受影響之消費者。 Pryor法案之適用對象甚廣,故有認為,該法一旦通過,其將成為繼美國金融服務法〈the Gramm-Leach-Bliley Act,簡稱GLBA〉後的模範法典,其適用對象包括受GLBA規範之金融機構及任何個人〈any individual〉、合夥〈partnership〉、公司〈corporation〉、信託〈trust〉、工地產產業〈estate〉、合作社〈cooperative〉、協會〈association〉、維持或傳送「敏感的會計資訊」或「敏感的個人資訊」之業主〈entity that maintains or communicates “sensitive account information” or “sensitive personal information”〉,但並不包括任何政府辦事處或其他聯邦、州政府單位、地方政府〈any agency or other unit of the federal,state, or local government〉或任何其下所再劃分之單位〈any subdivision thereof〉。 惟此一倡議中之資料安全立法不論法令遵循或執行皆有一定難度,因該法雖要求對超出「損害門檻」之資料外洩需對消費者通報,但對「損害門檻」並無明確定義。此外,受影響之企業似無實行適當風險評估之誘因,除需耗費大量成本評估外洩事件是否超過損害門檻外,尚需面臨企業名譽受損與客戶不滿之損失,在個資外洩要素風險指導原則付之闕如之情形下,企業恐無法客觀地評估自身個資外洩之風險。故有建議,解決之道,應明定損害門檻,並聘請外部專家或使用市場新工具,訂定客觀的指導原則,使企業在處理個資外洩問題時能減輕混亂及鼓勵評估結果的一致性並縮短風險評估的時間。 就資訊安全部分,此法案揭櫫於其通過一年內,美國商務、科學及交通委員會〈Committee on Commerce, Science, and Transportation〉應頒布規定,要求擁有或處理含有個人資料或契約之企業,必須建立並執行蒐集、使用、出售,及其他傳播、維持個人資訊之資訊安全政策,以達保護個人資料之目的。
何謂「孤兒著作」?「孤兒著作」係指仍在著作權保護期間,但是著作權人不明知著作。依著作權法第10條規定,著作人於著作完成時享有著作權,而著作權之保護期間依著作權法第30條第1項存續於著作權人之生存其間及其死亡後之50年。 在網路普及資訊流通快速之現代,經過不斷的轉載,許多著作權人不明,但是仍受著作權法保護,所謂之「孤兒著作」在市面上不斷流通。此時若與利用孤兒著作,但是不知道著作權人是誰,無法取得授權之情形下,要怎麼辦才不會觸法? 此時依文化創意發展法第24條,想要利用孤兒著作之人,得在盡力尋找著作權人未果後(不知著作權人為何或是著作權人聯繫資訊不明知情形),向智財局說明無法取得授權之原因,並提存一定金額,取得智財局之許可授權後,於許可範圍內利用該著作。又須提存之金額應與一般著作經自由磋商所應支付合理之使用報酬相當。