日本國土交通省於2017年2月修正《道路運輸車輛安全基準》第55條第1項、第56條第1項及第57條第1項規定之告示,放寬車輛安全基準規定,期望自動駕駛實驗能順利展開。惟在各種自動駕駛實驗中,遠距型自動駕駛系統是透過電信通訊技術,從遠距離外操作車輛行駛,儘管修法後已放寬安全基準規定,但其仍與現行以車內有駕駛為前提而訂定之《道路運輸車輛安全基準》相距甚遠,想一律判斷其符合安全基準有所困難。據此,為使遠距型自駕系統道路實驗能夠順利進行,國土交通省於2018年3月30日創設「搭載遠距型系統自駕車基準緩和認定制度」,明確規定遠距型自駕系統實施道路實驗所需各項手續。
「搭載遠距型系統自駕車基準緩和認定制度」規定項目包括︰申請放寬基準之對象、申請者、申請書及繳交文件、審查項目、條件及限制、基準放寬之認定、車體標示、行政處分等。
本文為「經濟部產業技術司科技專案成果」
美國司法部(Department of Justice, DOJ)及聯邦貿易委員會(Federal Trade Commission, FTC)於今(2007)年4月中旬,公布了眾所矚目的「反托拉斯執法與智慧財產權報告」(Antitrust Enforcement and Intellectual Property Rights, Antitrust-IP Report)。本報告綜整歸納DOJ與FTC於2002年所舉行的一系列名為「知識經濟時代之競爭與智慧財產權法制政策」(Competition and Intellectual Property Law and Policy in the Knowledge-Based Economy)公聽會重點,以及來自於不同利益團體與產業代表之看法。 DOJ與FTC於1995年曾公布「智慧財產授權之反托拉斯指導原則」(Antitrust Guidelines for the Licensing of Intellectual Property,以下簡稱1995年指導原則),基本上,甫公布的「反托拉斯執法與智慧財產權報告」的內容,重申DOJ與FTC過去依1995年指導原則的執法實務與政策,報告也特別針對幾種經常引起疑義的智慧財產運用態樣,諸如搭售(tying):專屬交易(exclusive dealing)、特殊授權條款、專利聯盟(patent pools)、交互授權(cross-licenses),肯認其亦有加強競爭並有利於消費者的效果,故DOJ與FTC將會依合理原則(rule of reason)評估個別契約的合法性,而不會逕認其係本質違法(per se unlawful)。所謂合理原則,係指由法院及競爭法主管機關,就特定協議之有利於競爭效果與反競爭效果間進行權衡,以判斷其對整體市場競爭與消費者福祉所產生之影響。 此外,DOJ與FTC也針對個別的行為,如單方拒絕授權(unilateral Refusals to License)、標準制定(standard setting)、交互授權(cross-licenses)、專利聯盟(patent pools)、使專利期間延長於法定保護期間之外(extending patent rights beyond the statutory term)等,於報告中揭示其所持的一般管理政策。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
日本國交省公布「基礎建設之數位轉型政策」,期望建構更有效率、安全之社會環境日本國土交通省(下稱「國交省」)於2021年2月9日公布「基礎建設之數位轉型政策(インフラ分野のデジタル・トランスフォーメーション施策)」。此報告係國土交通省基礎設施DX推進本部(国土交通省インフラ分野のDX推進本部)於2021年1月所舉行第三次會議所彙整之政策方針。 針對基礎設施數位轉型之政策實施主要分為四個面向:第一部分強調透過行政程序數位化及網路化,藉以提升效率並加強管理效能,並且提供運用數位生活中各項服務,以增加生活之便利與安全。第二部分說明為實現安全與舒適之勞動環境,減少人工作業之負擔,未來欲活用AI與機器人,使施工作業與技術建設達到無人化,並透過數位化提高專業技術學習效率以培育相關人才。第三部分聚焦於調查、監督檢查領域,如公路、鐵路、河川及機場之檢修,利用資料分析與自動化機械提升日常管理及檢修效率。最後,為順利推行以上數位轉型政策,必須建構能支援數位化的社會。因此,未來除須結合智慧城市(スマートシティ)等數位創新政策,利用資料以具體化社會課題之解決方針外,亦須針對作為數位轉型基礎之3D資料進行環境整備,以利數位轉型之推動。
美國政府課責署重視NPE濫訴現象,並提出「patent monetization entities」概念近年專利蟑螂(Paten Troll)、非專利實施實體(Non-Practicing Entity, NPE)的興起,使得國際上智慧財產權的運用出現巨幅變化。美國政府、企業及學界皆認為專利蟑螂濫訴現象為亟待解決之課題,而相繼投入研究,並於近日陸續發表重要之研究報告。 繼今年(2012)8月,美國國會研究處 (Congressional Research Service)提出對抗專利蟑螂之研究報告後(“An Overview of the "Patent Trolls" Debate”)。隸屬國會的政府課責署(Government Accountability Office, GAO, 另譯審計總署)所資助的研究團隊,亦於杜克大學科技與法律評論(Duke Law & Technology Review)發表相關研究。研究團隊採取實證的研究方法,於2007年~2011年間,每年度隨機抽樣100家涉及專利訴訟的公司,總計抽樣500家公司。依據該項研究結果,去年(2011)由NPE所提起的專利訴訟,佔研究樣本的40%,相較於5年前的數據,成長幅度高達2倍。本項研究可歸納以下兩項要點: 1.專利訴訟主體的變化 由NPE為原告所提起的專利訴訟數量呈現極速成長;由企業為原告者則逐年下降;同為非專利實施實體之大學,其作為原告所提起之訴訟則未達1%。 2.訴訟並未進行實質審理 由NPE提起之訴訟,其目的在於獲取和解金或授權金,故絕大多數係申請作成即時判決(summary judgement),即當事人一致認為對重要事實不存在爭議,而向法官申請不為事實審理,僅就法律問題進行裁決。 就此,該研究團隊認為,NPE已成為專利制度,甚至係整體經濟之一環,故提出應以「patent monetization entities」取代過往NPE的稱呼,強調此類公司以專利授權或專利訴訟作為公司營利之來源,如此將更為貼切。