伴隨IoT和AI等技術發展,業者間被期待能合作透過資料創造新的附加價值及解決社會問題,惟在缺乏相關契約實務經驗的狀況下,如何締結契約成為應首要處理的課題。
針對上述狀況,日本經濟產業省於2017年5月公布「資料利用權限契約指引1.0版」(データの利用権限に関する契約ガイドラインVer1.0),隨後又設置AI、資料契約指引檢討會(AI・データ契約ガイドライン検討会),展開後續修正檢討,在追加整理資料利用契約類型、AI開發利用之權利關係及責任關係等內容後,公布「AI、資料利用契約指引草案」(AI・データの利用に関する契約ガイドライン(案)),於2018年4月27日至5月26日間公開募集意見,並於2018年6月15日正式公布「AI、資料利用契約指引」(「AI・データの利用に関する契約ガイドライン)。
「AI、資料利用契約指引」分為資料篇與AI篇。資料篇整理資料契約類型,將資料契約分為「資料提供型」、「資料創造型」和「資料共用型(平台型)」,說明個別契約架構及主要的法律問題,並提示契約條項及訂定各條項時應考慮的要點,希望能達成促進資料有效運用之目的。
AI篇說明AI技術特性和基本概念,將AI開發契約依照開發流程分為(1)評估(assessment)階段;(2)概念驗證(Proof of Concept, PoC)階段;(3)開發階段;(4)進階學習階段,並針對各階段契約方式和締結契約時應考慮的要點進行說明,希望達成促進AI開發利用之目的。
本文為「經濟部產業技術司科技專案成果」
歐盟在2013年12月3號正式通過「展望2020」(Horizon 2020)計劃,將在未來7年(2014-2020)之間,在10大領域投入770億歐元發展「尖端科學」(Excellent science)、「領導性工業」(Industrial leadership)與「社會挑戰」(Societal challenges)三大項目,以此承繼歐盟第七期科技研發計畫架構(7th research Framework Programme,FP7)所建立的基石。目前,歐盟在三大項目中,在今(2014)年發展項目分別是: 1.「尖端科學」:歐洲理事會將編列30億歐元,資助頂尖的科學家從事相關研究。此外,歐盟亦將透過獎學金的方式,鼓勵優秀的年輕研究者。 2. 「領導性工業」:透過18億的預算資助歐盟在產業領先的項目,包括是通訊技術、奈密、機器人等產業。 3.「社會挑戰」:歐盟將透過28億元解決2020年可能遇到的七個社會挑戰,例如是衛生、農業、海洋、生物科技、能源、交通、氣候行動、環境、與資源利用等領域。 在各大項目當中,因資通訊(ICT)產業占整體經濟4.8%外、且資通訊的研發設計(Research and Development) 又佔企業整體營收約25%。因此,促使歐盟在「展望2020」在ICT領域發展預算編列,高於歐盟FP746%,藉此加速資通訊技術、知識之革新與發展。至於,今(2014)年ICT在「領導性工業」發展項目中,將朝向以下6點發展: 1.下世代零組件與系統(A new generation of components and system)。 2.先進的計算(Advanced Computing)。 3.未來網際網路(Future Internet) 4.內容技術與資訊管理(Content technologies and information management)。 5.機器人(Robotics) 6.微型、奈米科技、與光電(Micro- and nano-electronic technologies, Photonics)。 綜觀上述六點,除了機器人、微型、奈米科技之新穎性,格外受人注目外,在「未來網際網路」與「內容技術與資訊管理」,亦須值得持續追蹤。在「未來的網際網路」發展上,歐盟將「智慧網路與新穎網路體系」(Smart Networks and novel Internet Architectures)、「先近雲端基礎建設與服務」(Advanced Cloud Infrastructures and Services )與「智慧光學與無線網路技術」(Smart optical and wireless network technologies)列為發展方向。 在「內容技術與資訊管理」上,巨量資料的研究(Big data-research)與創新與社群行銷的整合(Big data Innovation and take-up),則是歐盟未來1年發展項目之一。我國從2010年推動「數位匯流發展方案」(2010-2015年),其中如何促進新興媒體的發展與增加網路間競爭,一直為我國發展重點。因此,我國除了可透過歐盟所推動的「展望2020」為參考,從中思索是否具有政策盲點外,亦可成為2015年後科技政策進行先導計畫。
歐洲區塊鏈數位基礎設施聯盟預計於2024年正式開始運作,將進一步擴大推動區塊鏈的公共應用服務歐洲區塊鏈夥伴關係(European Blockchain Partnership, EBP)的成員於2023年6月正式向歐盟執委會(European Commission, EC)申請成立區塊鏈的「歐洲數位基礎設施聯盟」(European Digital Infrastructure Consortium, EDIC),若審核通過,未來歐盟將有一個正式的機構負責推動區塊鏈的發展與應用。 歐盟執委會於2023年1月發布了「2030年數位十年政策計畫」(Digital Decade Policy Programme 2030, DDPP),為促進歐盟數位轉型的大規模部署及能力建構,達到DDPP所設定的具體目標,執委會提出跨(多)國專案(Multi-Country Projects, MCPs)的概念,期待整合歐盟、各成員國、私部門的資源,以實現單一成員國無法獨立部署的數位化基礎設施。 執委會參考2009年開始陸續成立的「歐洲研究基礎設施聯盟」(European Research Infrastructure Consortium, ERIC),提出了「歐洲數位基礎設施聯盟」(EDIC)的規劃。EDIC並非由歐盟的資助計畫支持,而是由成員國申請(至少要包含3個成員國)成立以執行MCPs,EDIC具有法人格,並有獨立的財務來源;此外,EDIC成立後開放私部門參加。 2023年3月執委會發布的「數位歐洲2023~2024年工作計畫」(Digital Europe Work Programme 2023-2024)中,即將「區塊鏈」列為MCPs的重要發展項目之一。2023年6月15日於瑞典舉辦的歐盟數位大會(Digital Assembly 2023)上,執委會表示EBP及歐洲區塊鏈服務基礎設施(European Blockchain Services Infrastructure, EBSI)的相關成員國已遞交EDIC的申請。 斯洛維尼亞共和國(Republic of Slovenia)的區塊鏈小組負責人Nena Dokuzov是成立聯盟的主要推動者之一,其受訪時表示,EBSI從2018年以來,主要是由執委會以專案方式支持,未來聯盟成立以後,將能集結更充足的資源,強化歐洲區塊鏈的治理和穩定性,進一步地擴大推動歐洲區塊鏈的公共應用服務。我國「司法聯盟鏈」於2022年成立,為我國第一個跨部會、大規模的區塊鏈應用案例,並制定了跨組織協作標準規範(簡稱b-JADE),未來可持續觀測歐盟區塊鏈聯盟的發展,作為我國的參照。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
簡介人工智慧的智慧財產權保護趨勢近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
何謂「阿西洛馬人工智慧原則」?所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。 該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。 其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。