學名藥品侵權 v. 競爭法中的假訴訟
Generic Drug’s Patent Infringement v. Sham Litigation in Antitrust

  美國聯邦第三巡迴上訴法院於2014年時對於Takeda Pharmaceutical Co.(Takeda) v. Zydus Pharmaceuticals (Zydus) 一案判定:學名藥廠Zydus並無構成專利侵權,且原廠Takeda於本案的系爭專利並無失效[1]。惟本案的學名藥廠Zydus隨後向Takeda提起另一訴訟:Zydus聲稱該案的專利侵權訴訟是假訴訟(sham litigation)[2],亦即,Takeda 提起專利侵權訴訟之本意在於阻卻Zydus的學名藥參與市場競爭,而非旨在確認侵權事實或請求賠償。Takeda隨後提起反訴,主張美國The 1984 Hatch-Waxman Act[3]已明確賦予專利權人提起專利權侵權訴訟之權利,既有訴訟權,便無假訴訟之虞。

  美國聯邦貿易委員會(Federal Trade Commission, FTC)對於上述兩藥廠間的假訴訟爭議,在2018年6月時發布法庭之友意見書(amicus brief [4]),以5-0決議呼籲本案法院應對於假訴訟爭議進行審查。本意見書指出,The 1984 Hatch-Waxman Act、競爭法、專利法或其他醫藥法規,無任何關於藥品侵權訴訟得以免除假訴訟審查之規定。再者,FTC實有權限依據豁免原則(Noerr-Pennington Doctrine)及相關判例,就主觀與客觀要件,審查相關爭訟是否為假訴訟:(1)該爭訟程序客觀上是否無理由,提出爭訟者現實上是否不期待勝訴;(2)該爭訟程序當事人主觀上是否有意利用程序,直接地干擾競爭對手的商業關係。本意見書並進一步說明,原廠Takeda所提專利權侵權訴訟,即使學名藥廠Zydus之專利侵權事實為真,惟只要Takeda行為符合假訴訟主、客觀要件,仍有可能構成假訴訟;亦即,「是否侵權」與「是否該當假訴訟」兩者之判斷是分開的。


[1] 原廠藥之英文為branded drug,指一個藥廠自研發、生產、上市,而握有專利權之藥品,通常具有強大品牌名聲、價格通常也高;學名藥廠則是待原廠藥專利權屆滿後、或以侵權之方式,而製造與原廠藥相同或相似之藥物,學名藥價格相對較低,但在安全與效用上時常有疑慮。

[2] 美國競爭法豁免原則(Noerr Pennington Doctrine)下,私人爭訟方或單位,運用爭訟或政府程序等以促進法案的通過、增進法律執行等,免除競爭法之相關責任。但該責任免除之原則下,當事人若僅是利用政府或爭訟程序作為有害市場競爭的工具,並無合法地尋求正面結果; 或該爭訟僅是純粹的假訴訟,以干擾正當商業關係或市場競爭時,無該原則免除競爭法相關責任的適用,亦即,仍須受到競爭法的檢視與求責可能。

[3] The 1984 Hatch-Waxman Act 旨在促進學名藥參進市場競爭、兼顧學名藥與原廠藥間的利益保護,並明定原廠藥與學名藥廠均有權利提起專利權合法爭訟(validity),以避免學名藥進入市場的受阻、也欲杜絕學名藥廠進行藥品侵權行為。

[4] 此指法庭意見書,乃為了釐清法律爭議或協助解釋法律等所提之文書,供參考用、不具強制法律效力,我國翻譯則稱法庭之友。

相關連結
相關附件
你可能會想參加
※ 學名藥品侵權 v. 競爭法中的假訴訟
Generic Drug’s Patent Infringement v. Sham Litigation in Antitrust, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8085&no=55&tp=1 (最後瀏覽日:2026/01/29)
引註此篇文章
你可能還會想看
美國賓州眾議院通過《人工智慧生成內容揭露法》

美國賓州(Pennsylvania)眾議院於2024年4月10日通過《人工智慧生成內容的揭露法草案》(House Bill 1598 Disclosure of Artificially Intelligent Generated Content,下稱草案),規範AI生成內容及其利用行為以保護消費者。 草案規定,以AI生成之各種形式內容,在其首次呈現給消費者時應揭露資訊,使消費者知道該內容為AI生成之結果。如果明知或重大過失(Knowingly or recklessly)產出、散布或發布任何未「明確且顯著」(clear and conspicuous)揭露其內容為AI所生成者,即屬「不公平或欺騙性行為或做法」,將被依賓州《不公平貿易行為與消費者保護法》(Unfair Trade Practices And Consumer Protection Law)規定處罰。草案亦說明應如何揭露資訊,方符合條文所謂「明確且顯著」標準,例如針對AI生成之音訊內容,其揭露應以足夠的音量和節奏傳達,以便消費者聽取和理解。 此外,草案也關注兒童保護問題。鑑於AI生成的兒童性剝削圖像通報日益增加,草案最後新增規定,未來不能將「兒童性剝削圖像為AI生成」作為辯護理由,且檢察總長或地區檢察官可起訴製造、持有以及傳播AI生成之兒童色情或性虐待素材等相關行為。 目前草案已在州眾議院通過,由州參議院審議中。草案的提案議員強調,人們有權知道其消費的內容實際上是使用AI產出的成果,因此草案通過後,可望有效遏阻濫用AI的行為,提供賓州民眾更多的保障。

美國司法部發布「防止受關注國家或個人近用美國敏感個人資料與政府相關資料」之最終規則,以因應國家安全威脅

美國司法部(Department of Justice, DOJ)於2025年1月8日發布「防止受關注國家或個人近用美國敏感個人資料與政府相關資料」(Preventing Access to U.S. Sensitive Personal Data and Government-Related Data by Countries of Concern or Covered Persons)之最終規則。該規則旨在避免特定國家或個人獲取大量國民敏感個人資料及政府相關資料,以降低國安威脅。 最終規則指出,去識別化敏感個人資料若經大量蒐集,仍可能被重新識別,因此原則上禁止或限制任何美國人在知情的情況下,與受關注的國家或個人進行該等資料的大量交易。其將敏感個人資料定義為社會安全碼、精確地理位置、車輛遙測資訊(vehicle telemetry information)、基因組以及個人健康、財務資料或其他足資識別個人之資料,並定義禁止及限制交易的型態。同時,最終規則除設有若干豁免交易類型外,也定有一般及特別許可交易規定,並授權司法部得核發、修改或撤銷前述許可。一般許可交易的類型將由總檢察長另行公布;特別許可則由總檢察長依個案酌情例外核准。 該規則課予交易方持續報告(reporting)、盡職調查(due diligence)、稽核(audit)、紀錄留存(recordkeeping)等義務,並針對涉及政府相關資訊或美國國民大量敏感個人資訊之商業交易,例如投資、雇傭、資料仲介(data brokerage)及供應商契約,提出資安要求,以降低受關注國家或個人獲取該類特定資訊的風險。最後,該規則定有民事罰款(37萬美金以下)、刑事處罰(100萬美金以下或20年以下徒刑),並設立申訴之救濟措施。

中國大陸發明專利申請量已躍居世界第四位

  中國知識產權局局長田力普在「2006 年中國保護知識產權高層論壇」上表示,2005 年中國發明專利申請量居世界第四位,成為世界第十大申請國,在發展中國家排名第二。   不過,雖然中國大陸知識產權制度實施二十年來成績顯著,但是中國大陸自行研發的能力仍有待提昇。因為,2005 年中國大陸發明專利申請十七萬餘件中有近五成來自外國,而來自獨資、合資等三資企業只佔了大約六分之一。若從申請發明專利的技術程度觀察,外國人發明專利申請案集中在高科技的技術領域,而中國國內發明多集中在一般技術領域。   對照 2005 年大陸的中央企業研發投入額佔當年銷售收入的比重平均為 1.5% ,相較先進國家大型企業一般不低於銷售收入 5% 的研發費用,差距甚遠。事實上,大陸央企擁有的所有專利總數已達30520項,但這數字還不及日本佳能企業的一半。因此,大陸國資委主任李榮融表示,在中央企業負責人業績考核體系中,國資委將會加大科技投入和創新能力建設的考核力度。

新加坡將推動國家電子醫療紀錄

  新加坡自今年(2018年)1月5日起推動「醫療服務法案(Healthcare Services Bill)」之制定,該法案預計取代現有「私人醫院和醫療診所法(Private Hospitals and Medical Clinics Act)」。其中「國家電子醫療紀錄(National Electronic Health Record),下稱NEHR」將整合並改善國營醫療機構及非國營醫療機構兩種醫療紀錄無法互通之情形,而行動醫療及遠端醫療亦納入之。   根據目前之諮詢狀況(已於今年2月15日結束),提案單位衛生部(Ministry of Health)表示,由於現代醫療技術已趨近複雜,若能整合各醫療單位之就診紀錄,將可大幅提升醫療效率,特別是在急診的狀況下,整合過的單一病歷將可降低評估所需的時間。   而對於病患之個資方面保護,該部表示,首先,NEHR並不會蒐集全部患者的醫療參數,只有患者之核心醫療參數才會上傳至NEHR之資料庫內,此外亦不提供非醫療目的外之使用(例如就業及保險評估)。而為降低非法使用之機率,非法使用亦將處罰之。   另外為尊重病患個人之資訊自決權,NEHR亦提供了病患選擇退出機制(opt-out)以作為個資保護的最後屏障。然而該退出機制仍不同於一般的退出機制(即退出後不得蒐集、處理及利用),該機制僅禁止各醫療機構讀取該病患之醫療紀錄,但是各該機構依NHER之架構仍應將每次就診紀錄上傳之,此一設計係避免緊急情況下或病患同意讀取電子病歷時,卻無醫療紀錄可供查詢之窘境。

TOP