「促進整合產官學共同研究的大學概況調查書(産学官共同研究におけるマッチング促進のための大学ファクトブック)」為日本經濟產業省與文部科學省所共同設置的「促進創新產官學對話會議」議定後向外提出,期待藉此使企業更容易理解大學的產官學合作現狀,進一步實現正式的產官學連攜活動。
該概況調查書的先行版中收集整理了各大學整合產官學連攜的實績等資訊,2018年發布的正式版則統整日本327所大學的情報,擴充並更新了該概況調查書的內容,包含:1.產學連攜相關的聯絡窗口資訊等;2.產官學連攜活動的配套方針與往後期待重點化的事項;3.產學連攜之本部機能的相關情報;4.面向正式共同研究的配套措施,如平均交涉期間、跨領域型共同研究;5.各大學之專精領域及其實例;6.資金、資產及智慧財產相關連的持有使用狀況;7.大學發起的創投事業數及其支援體制;8.混合僱用制度的狀況。
本文為「經濟部產業技術司科技專案成果」
英國財政大臣(Chancellor of the Exchequer)George Osborne日前於今(2011)年3月23日發表財政報告時宣佈,英國綠色投資銀行(UK Green Investment Bank, GIB)預計於2012年開始正式對外營業,且其開放對象為各相關產業。而未來英國GIB之營業項目,主要將針對具有高度風險,或是市場成本回收需要長時間等待之相關低碳企劃案進行經費補助,同時亦進一步制定二氧化碳排放價格。 早在2009年2月時,英國三大非營利組織團體E3G、Friends of the Earth、以及Climate Change Capital即共同發表一份聯合聲明提議成立綠色投資銀行,以鼓勵發展低碳經濟。然而,該份提議報告乃至2010年3月才正式獲得政府相關人士的重視,因其意識到綠色投資銀行之成立,也許能符合當前英國對於基礎設施與能源發展之需求。不過,對於綠色投資銀行是否成立之辯論,乃持續到今年3月才正式拍板定案,根據上述之政府財政報告,英國政府計劃於該投資銀行成立後,投注3億英鎊經費投資相關低碳企劃案之推行,並預計於2015年時,另外由私部門投注15億英磅補助相關企劃案,而其經費補助對象層面將以相關產品市場(market)為主。 英國能源與氣候變遷部(Department of Energy and Climate Change)國務卿(Secretary of State)Chris Huhne表示,綠色投資銀行成立後,在結合來自各方之穩定資金下,必能藉由投資綠色能源研發之方式,創造一個穩定且平衡的經濟成長。同時,相關政府單位亦期盼,未來綠色投資銀行除了能提供政府相關領域之經費分配,與研發技術之建議外,亦能以創造具商業價值之產品,達到分散私人投資風險之目的。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
網域名稱命名大變革—從“.com”到“.任何名詞”網際網址(internet address)在技術上被稱為網域名稱(domain name),若沒有此網域名稱,電腦使用者就需要記住一串又臭又長的數字,例如"165.1.59.220" 而非"ap.org."。 從1984年以來,全球一般通用的網際網址字尾(suffix)多半以”.com”作結尾,但日前全球網域名稱管理機構「分配網域名稱與網址之網際網路管理組織」(Internet Corporation for Assigned Names and Numbers, ICANN)在新加坡召開會議,決議通過開放網際網址字尾不再限於”.com”,未來將可以任何品牌、嗜好、城市等名稱命名。這項決定堪稱是網際網址系統有史以來最大的變革。 ICANN表示,ICANN一直以來都希望能擴張網際網址字尾的數目,然而在商標侵權爭議、出現淫穢字眼等考量下,擴展網際網址字尾的進展顯得緩慢。終於在花費長達六年時間協商討論網際網址字尾之命名及運用,完成撰擬網際網址字尾指導原則(guidelines),並決議通過網際網址字尾新的命名規則。 ICANN將從明年1月12日起開始接受申請,為期3個月,申請費用為185,000美元,每年維護使用(maintain)費為25,000美元。若申請案未遭他人以商標侵權、道德風俗等理由申請異議,將可很快取得核准。若有異議情形,申請案將進行進一步的審議(包括仲裁程序)。若當有兩個以上申請人皆有正當理由申請同一名稱時,ICANN希望雙方能先進行和解,若仍未達成協議,ICANN將會以競標方式決定由誰取得該名稱。 此項消息公佈後,外界揣測備受矚目的娛樂事業、專門販售消費者商品的公司、金融服務業者,將可能紛紛以其品牌或商標名稱,申請註冊新的網際網址字尾。例如相機及印表機大廠Canon Inc.,已計畫申請”.canon”,幾個由銀行及金融服務業者組成的貿易組織也正在評估共同申請”.bank”、”.insure”、”.invest”供其會員日後使用;另有環保團體目前亦評估申請”.eco”作為其網際網址的字尾。 網際網址字尾的大幅開放後,各公司皆可以其品牌、熱銷商品名稱等琅琅上口詞彙,作為其網站的網址,此舉將為公司帶來許多推廣、行銷品牌之機會,可預見明年網際網址字尾的申請熱潮將席捲而來。
淺談區塊鏈之著作權保護機制淺談區塊鏈之著作權保護機制 資策會科技法律研究所 法律研究員 翁竹霆 105年11月21日 FinTech,即金融科技,泛指利用科技使金融服務變得更有效率之創新技術。因比特幣(Bitcoin)而廣為人知之區塊鏈(Block chain)技術便是其中之一大代表,其對金融產業帶來破壞性之創新,顛覆金融產業長久以來之概念架構,未來勢必對人類社會帶來不小的影響。 著作權又稱版權,係指在作品上設定權利,並加以保護之制度,長久以來與科學技術相輔相成,共同促進人類社會進步[1]。然網路技術使作品複製與傳播之成本大幅降低,對著作權制度之震撼甚大,管見以為,以點對點(Peer-to-Peer)網路技術為基礎之區塊鏈,恰是著作權制度與網路技術此番挑戰之調和劑,引入區塊鏈技術應用於著作權保護,使新科技不僅是對法制帶來危機,亦可能是帶來轉機,此為本文撰寫之契機。 壹、技術背景 區塊鏈之概念最早可溯及2008年11月,中本聰發表之《比特幣:一種對等式的電子現金系統》[2]。簡言之,區塊鏈是一去中心化之分散式系統,在P2P網路上利用非對稱加密技術記錄每筆行為資訊,具有去中心化、透明性、開放性、自治性、訊息不可篡改、匿名性等六大特徵[3]。比方說在一塗鴉牆上,人人在牆上可畫可看牆上訊息,但僅有訊息之收發當事人能看懂訊息內容。 區塊鏈能防止訊息偽造,提升系統穩定,將傳統交易對人的信任更新為對技術的信任,降低信任成本,當前各國正積極投入區塊鏈之應用。然區塊鏈技術雖有諸多優點,亦不例外有其缺點。本質上,區塊鏈係以成本為代價,換取鏈內資訊之真實與完整,此缺陷反映於該技術之時間與空間成本。 貳、我國法制 區塊鏈發展至今,其應用領域已延伸至各種領域,如數位金融、食安履歷、智財保障等,本文將聚焦於區塊鏈技術對著作權存證之應用機制。 有權利即有救濟之法理,可見於我國大法官會議釋字第243號解釋,故著作權受有侵害時,著作權人應得提訴以維護其權利。然依我國民事訴訟法第277條與刑事訴訟法第232條、第319條之規定,民事原告和刑事告訴人負有證明自己為權利人或被害人之一舉證責任,就採行註冊或登記主義之專利權、商標權而言,權利人之舉證或非難事,惟於採創作主義之著作權而言,此舉證責任難度顯然高於專利權人及商標權人。就此我國著作權法雖有參酌各國立法例,規定如著作人之著作符合一定推定規則,在訴訟上即不負有舉證責任,此即「著作人推定」[4]。依著作權法第13條之著作權人推定之規定,必須在著作之原件或其以發行之重製物上,或將公開發表時,以通常方法表示著作人之本名或眾所周知之別名。反面解釋來說,若著作人一時疏忽或因該創作領域之習慣,未於著作表示著作人本名或別名,著作人將難受推定而享有著作權,創作心血將付之一炬。 我國最高法院92年度台上字第1664號判決之見解認為,著作權人為證明著作權,應保留其著作之創作過程、發行及其他與權利有關事項之資料作為證明自身權利之方法;該判決更指出著作權人至少需證明著作權人身分、著作完成時間、非抄襲之獨立創作;102年度台非字第24號判決重申著作權人未提出或交待研發過程之相關資料,尚不足認其主張之系爭標的係屬著作,亦不得僅憑該造友性證人之宣誓書及證言云云,即謂所述創作歷程可採;而智財法院97年刑智上易字第70號判決中則指出,該件鑑定小組藉由就權利人之營業處所及其創作過程進行實地勘查,推論得知告訴人係真正創作之著作權人。基此,權利人無法受有著作人推定時,需提出證據,跨越三道門檻,方可證明其確有權利,此為現行制度下,著作權人維權所面臨之現實難處。 如前所述,當前著作權人之維權存在著舉證難、週期長、成本高的問題,而區塊鏈在技術上可應用於著作權之存證,與實務見解之著作人身分、著作完成時間、非抄襲之獨立創作等待證事項完美匹配,原因分析如下: 一、著作權人身分 此部分意在證明著作確係主張權利人所創作,證明難度應不高,僅需著作人於登入系統時進行身分驗證,透過如帳號密碼、電子憑證等技術,便能推定系統之使用者確為著作人本人。目前多數網路平台均有採相似技術,於登入系統時確認使用者之身分、年齡等資訊,如結合區塊鏈不可篡改之特性,將更可保存身分資料,確認真實性。惟著作人本人是否具行為能力,甚至具備創作能力,尚非區塊鏈技術可以解決,仍需視個案事實認定之。 二、著作完成時間 區塊鏈在技術上,其區塊之排列係按照歷史時間順序,恰可將我國實務見解強調之創作過程,如日記般記載呈現,清楚確定著作係於何時生成而取得著作權,有助於釐清權利取得先後之爭議。 三、非抄襲之獨立創作 所謂創作過程乃著作人在創作時之相關紀錄,常見之紀錄包含筆記、草稿、設計圖、會議紀錄等。又因我國法律並無明定何謂抄襲之判定基準,法院常以創作過程做為認定系爭著作是否抄襲之依據。惟著作人於訴訟中證明自己確非抄襲存有困難,縱委請公證人進行著作認證,或將著作寄存於特定機構,亦僅能證明自己在特定時點完成著作,仍無法證明系爭著作係自己之獨立創作[5]。若運用區塊鏈具有去中心化、透明性、訊息不可篡改等特徵,即能確保創作過程係被忠實記錄於區塊鏈中,不受變更;過程訊息之完整性與真實性亦可通過科學之檢驗,便於著作人舉證證明系爭著作之創作過程。透過作品之創作緣由、經過細節,輔以庭審詰問質證,即可舉證之著作人確為實際創作者。 綜上,如導入區塊鏈對我國之著作權進行存證保護,作為此技術之新運用,應符合法院實務見解與創作市場需求,具有可行性。 叄、國際實例 台灣近期已有銀行業者將區塊鏈運用於金融業務[6],如欲建立我國區塊鏈之著作權保護機制,或可借鑑國外成功實例,汲取他人操作經驗。目前國際上,將區塊鏈技術運用至著作權保護之實例以歐美為大宗,包括blockai[7]、Ascribe[8]、Verisart[9]等許多網路平台運用區塊鏈對著作權進行存證,本文分別簡介如下: 一、blockai 美國長久以來係由國會圖書館管理著作權事宜,惟實作程序上曠日費時且效率不彰。blockai便在此環境中誕生,作為一運用區塊鏈保護著作權之網站,其旨在提供更簡單有效的新選擇。blockai以區塊鏈建立公眾資料庫搭配圖像比對技術,以證明作品確由著作權人創作進而保障之。其開立之著作權證書雖並無法定證據效力[10],但因區塊鏈信息不可篡改之技術特徵,仍可成為法庭上有相當證明力之證據[11]。 二、Ascribe 德國的Ascribe通過區塊鏈,使作者可以確定作品的權利屬性,安全的進行分享並追蹤作品傳播情況[12],亦透過區塊鏈對作品創作真實性進行認證,在發行時可就發行數量進行限制,旨在使數位內容作品在網路環境中能如同實體作品般具備稀少性。與blockai作法類似,Ascribe也提供著作權證書[13],該證書除作者名稱、作品名稱、完成時間外,更包括所有權人、交易時間,透過紀錄所有權移轉歷程體現數量限制、追蹤傳播情況的功能,有效避免一權多賣。 三、Verisart Verisart亦是透過區塊鏈從事著作權保障的網站,作法係提供一App予使用者,使其可以簡單、快速地驗證作品,使用者包括創作者、收藏家、交易者不等,與其他平台不同處在Verisart操作上通過手機、平板電腦等行動裝置,在作品訊息的資料上,更記載作者當前地點,突顯行動性,係區塊鏈技術與行動裝置的創新結合,以行動裝置使著作權的存證不受時間、地點的桎梏。 雖然區塊鏈目前只能提供每秒150次交易,但對著作權驗證已堪用。蓋著作權存證之目的在於呈現訴訟實務上所重視之創作過程,該過程係一歷史事實之呈現,著眼於訊息之正確與完整,而不要求訊息傳遞之即時性,是以區塊鏈技術上之時間成本,於此並不構成致命缺陷;至於空間成本,因硬碟儲存技術之發展,儲存空間已可以極低成本予以克服。 肆、結論 面對虛擬貨幣之新思潮,各國政府與民間爭相投入區塊鏈之應用研究,望能藉新技術降低產業成本,如中國人民銀行成立中國區塊鏈研究聯盟,美國有利用區塊鏈保障著作權之平台,台灣亦有金融業者加入全球區塊鏈聯盟與國際接軌。從我國著作權訴訟實務上著作人舉證責任視之,通過科學技術保障權利標的進行舉證,與一般證人之證言宣誓有別,證據之證明力更禁得起檢驗。在我國現行法未有著作權登記制度之際,引入區塊鏈於著作權保護之應用,可對現行法制上之舉證難題對症下藥,緩和權利人不易舉證之窘境,使權利人更能獲得其應有之權益保障,落實我國著作權法之立法目的。期待產業主管機關或著作權專責機關,推動運用區塊鏈技術解決創作舉證不易而產生的著作權歸屬糾紛,並進一步利用區塊鏈技術於授權交易,促進原創作品的流通,為我國數位經濟與文化創意發展構築更加完備的發展環境。 [1] 吳偉光,《數字技術環境下的版權法》,知識產權出版社,頁17(2008)。 [2] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, https://bitcoin.org/bitcoin.pdf (last visited Oct. 3, 2016). [3] 長鋏、韓鋒,《區塊鏈:從數字貨幣到信用社會》,中信出版社,頁54(2016)。 [4] 蕭雄淋,《著作權法論》,五南出版股份有限公司,第七版,頁71(2010)。 [5] 台灣內容市集網站,https://www.tcrm.org.tw/index.php(最後瀏覽日:2016/10/04)。 [6] 華銀區塊鏈應用大躍進,http://udn.com/news/tory/7239/2035353(最後瀏覽日:2016/10/20)。 [7] blockai網站, https://blockai.com/ (last visited Oct. 4, 2016). [8] Ascribe網站, https://www.ascribe.io/ (last visited Oct. 20, 2016). [9] Verisart網站, https://www.verisart.com/ (last visited Oct. 20, 2016). [10] 蔡茜堉,金融科技專利現況,http://www.tipo.gov.tw/public/Attachment/67259101946.pdf(最後瀏覽日:2016/10/04)。 [11] 區塊鏈豈止用於金融?外國新創利用技術保護知識產權,http://unwire.pro/2016/03/15/blockai-uses-blockchain-to-protect-intellectual-property/startups/(最後瀏覽日:2016/10/04)。 [12] 長鋏、韓鋒,《區塊鏈:從數字貨幣到信用社會》,中信出版社,頁229(2016)。 [13] Ascribe證書範例, https://d1qjsxua1o9x03.cloudfront.net/live%2Fcb70ab375662576bd1ac5aaf16b3fca4%2F23964ae7-3bfc-46b4-85d6-05c9f09ba300%2Fcoa%2Fcoa-2016-01-04t12-56-13.pdf (last visited Oct. 20, 2016).