「促進整合產官學共同研究的大學概況調查書(産学官共同研究におけるマッチング促進のための大学ファクトブック)」為日本經濟產業省與文部科學省所共同設置的「促進創新產官學對話會議」議定後向外提出,期待藉此使企業更容易理解大學的產官學合作現狀,進一步實現正式的產官學連攜活動。
該概況調查書的先行版中收集整理了各大學整合產官學連攜的實績等資訊,2018年發布的正式版則統整日本327所大學的情報,擴充並更新了該概況調查書的內容,包含:1.產學連攜相關的聯絡窗口資訊等;2.產官學連攜活動的配套方針與往後期待重點化的事項;3.產學連攜之本部機能的相關情報;4.面向正式共同研究的配套措施,如平均交涉期間、跨領域型共同研究;5.各大學之專精領域及其實例;6.資金、資產及智慧財產相關連的持有使用狀況;7.大學發起的創投事業數及其支援體制;8.混合僱用制度的狀況。
本文為「經濟部產業技術司科技專案成果」
加拿大安大略省議會於2016年5月三讀通過修正健康資訊保護法(Health Information Protection Act, HIPA)。該法案藉由一連串措施,包括增加隱私保護、問責制與提升透明度,以提高病人地位。 1.在符合指令定義內,將違反隱私之行為強制性地通報與資訊與隱私專員; 2.強化違反個人健康資訊保護法之起訴流程,刪除必須於犯罪發生之六個月內起訴之規定; 3.個人犯罪最高額罰款提升到50,000元至100,000元,組織則為250,000元至500,000元。 而健康資訊保護法也將更新照護品質資訊保護法(Quality of Care Information Protection Act, QCIPA),有助於提升透明度,以保持醫療系統的品質,更新內容包括: 1.確認病患有權得知其醫療相關資料; 2.釐清不得對關於受影響的病患與家屬保留重要事項之資訊與事實; 3.要求健康與長照部(Minister of Health and Long-Term Care)每五年定期審查照護品質資訊保護法。 安大略省亦正著手研究由專家委員會提出,所有關於提升照護品質資訊保護法所稱重大事故透明度之建議。 藉著透過該目標,將可提供病患更快的醫療,更好的家庭與社區照顧,安大略政府希望可以透過上開手段以保護病患隱私以及加強其資訊透明度。
日本經產省公布產業版資料契約指引和資安手冊日本經濟產業省於2017年起提倡「Connected Industries」,其中一項重點任務為「平台、基礎設施安全」。為達成上述任務,經產省召開「平台資料活用促進會議」(プラントデータ活用促進会議),於2018年4月26日制定公布「資料契約指引產業保安版」(データの利用に関する契約ガイドライン産業保安版)及「物聯網安全對應手冊產業保安版」(IoTセキュリティ対応マニュアル産業保安版),以因應資料經濟時代資訊外洩及網路攻擊等風險。 日本經產省為促進業界資料流通與利用,已陸續於2015年、2017年和2018年制定「推動現有資料交易為目的之契約指引」(既存のデータに関する取引の推進を目的とした契約ガイドライン)、「資料利用權限契約指引」(データ利用権限に関するガイドラインVer.1.0)。本次「資料契約指引產業保安版」則進一步整理資料權利歸屬判斷方式,提供模範條款及說明各條款內容,並羅列作為資料提供者可能具備之優點。此外,隨著物聯網等資訊科技發展,資安風險逐漸受到重視,為提升物聯網產品安全防護,經產省亦以平台管理者為對象,制定「物聯網安全對應手冊產業保安版」,提供適當安全對策及案例。
國有研發設施開放近用之法制規範研析-以美日韓規定為核心 歐盟執委會提出「具可信度之人工智慧倫理指引」歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。 該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。