美國發起「投資報酬計畫」(Return on Investment Initiative, ROI)全面檢視科研成果商業化法制

  川普總統在2018年4月發布「總統管理議程」(President’s Management Agenda)將國家科研成果商業化之發展視為「聯邦跨機關優先目標」(Cross-Agency Priority Goal, CAP Goal)。為維持美國全球科技創新領先地位,美國政府每年投資約1500億美元於各聯邦所屬大學與研究機構進行科技研究。美國國家標準與技術中心(NIST)與白宮科技政策辦公室(OSTP)聯合發起「投資報酬計畫」(Return on Investment Initiative, ROI),宗旨為釋放美國創新(Unleashing American Innovation),讓政府投資預算發揮科研補助之最大效益。

  計畫目的包括:1.評估現行政府從事技術移轉指導原則,檢視應予以維持與待改革之處;2.吸引後期研發、商業化與先進製程的技轉投資,並降低法規阻礙;3.支持科研創新產官學合作模式與技轉機制;4.有效移除技轉阻礙以利加速技轉成效,並聚焦於國家重要產業發展的新興措施;5.評估聯邦政府資金運用指標成效;6.創造激勵學研機構提升技轉成效之誘因。

  NIST調查指出,阻礙技轉發展之原因包括:1.技轉與智慧財產權協商所涉高額交易與時間成本;2.不同政府單位對法規之解釋、適用與實踐意見相歧;3.智慧財產權保護不足、技術授權使用限制與政府行使介入權(march-in rights)限制;4.公務員參與科技新創與衍生企業(spin-off)限制與利益衝突規範。此ROI計畫已於2018年7月30日完成各方意見徵詢,總計共104份。預計於2019年年初,做出完整分析報告與法制建議。

相關連結
相關附件
你可能會想參加
※ 美國發起「投資報酬計畫」(Return on Investment Initiative, ROI)全面檢視科研成果商業化法制, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8100&no=55&tp=1 (最後瀏覽日:2025/11/29)
引註此篇文章
你可能還會想看
醫療物聯網(The Internet of Medical Things, IoMT)

  醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。   就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。   由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

「資訊儲存服務」提供者法律責任之研究-以日本實務新興發展為例

美國猶他州針對未成年人使用社群媒體之新禁令

美國猶他州州長柯克斯(Spencer Cox)於2023年3月23日簽署參議院152號法案(社群媒體規則修正案,Social Media Regulation Amendments)與眾議院311號法案(社群媒體使用修正案,Social Media Usage Amendments)等兩項法案,此舉是為了因應美國青少年日益沉迷社群媒體的問題,降低網路霸凌、剝削與未成年人個資外洩之風險。新法預計於2024年3月1日生效,兩項法案所提列之重點如下: 一、參議院152號法案針對社群媒體業者,要求其對於社群媒體應用程式之用戶,應採取以下措施: 1. 對於想要創設或持有社群媒體帳號之猶他州居民,須驗證其年齡。 2. 未滿18歲的用戶,須獲得父母或監護人的同意。 3. 允許家長有查看未滿18歲子女帳號內容之權限。 4. 訂定宵禁機制,於夜間(晚上10:30至早上6:30)禁止未成年登入使用帳號,但家長可視情形調整。 5. 禁止未成年用戶,向未曾關注或加好友的陌生人直接發送訊息。 6. 須於搜尋引擎中隱藏未成年人帳號。 7. 若違反上述內容,每項違反處以業者2,500美元之民事罰款。 二、眾議院311號法案針對「有使用導致未成年人成癮(Addiction)於社群媒體之設計或功能」之業者,訂定以下相關裁罰: 1. 經證明會導致未成年人對社群媒體成癮之行為、設計或功能,針對每項行為、設計或功能,處以業者25萬美元之民事罰款。 2. 若使未成年人接觸而致其成癮者,依未成年人數計算,每位最高可罰款2,500美元。 3. 允許父母得以其未成年子女因成癮致其身體、情感與財產上之損害為由,起訴社群媒體業者。 4. 若為未滿16歲之用戶依本法請求損害賠償者,媒體業者將推定過失責任,亦即由業者負舉證責任。 兩項法案皆是為保護美國18歲以下的未成年人,要求IG、TikTok、Twitter、Facebook等社群媒體一定作為與不作為之義務,若有違反情形,猶他州商務部消費者保護司(DCP)有權限對其違規行為處以民事罰款。上述美國法案針對未成年之保護,以透過規定使平臺業者設計出更優質、更完善的程式介面之觀點,可作為我國未來針對社群媒體監管措施之借鏡與觀察。

TOP