英國交通運輸部公布「交通運輸之未來」公眾諮詢文件

  英國交通運輸部及聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV)於2018年7月30日公布「交通運輸之未來」公眾諮詢文件(Future of Mobility-Call for Evidence),提及未來之交通運輸趨勢:

(1) 更加潔淨之交通運輸工具(cleaner transport):因電池價格下降、電動車技術之改善、開發替代燃料等因素,可減少現有交通工具之碳排放,並作為後續新技術研發基礎。英國政府已明確表示預計於2040年前讓新車及貨車實現零碳排目標。
(2) 自動化(automation):因感測器技術進步以及演算法和人工智慧之快速發展,使交通運輸自動化程度大幅提升。英國政府預計2021年可讓完全自動化駕駛車輛於道路行駛。
(3) 資料及聯結(data and connectivity):未來聯網車輛間可互聯,亦可與交通號誌互聯,透過即時路況告知,以避免道路壅塞。
(4) 新模式(new modes):英國已使用無人機於緊急服務或基礎設施勘查,未來可能有垂直起降之車輛出現,而計程車及公車之分別亦逐漸模糊。
(5) 交通運輸共享化(shared mobility):利用共享車輛可降低交通壅塞及廢氣排放,如公共自行車、商業化之車輛共乘。
(6) 不斷轉變的消費者態度(changing consumer attitudes):消費者已漸漸期待所有交通工具的預約叫車及支付,皆可透過手機進行,主管機關則應考量消費者需求,確保相關交通服務的利用。
(7) 新商業模型(new business models):未來交通運輸已有新商業模式出現,如公共運輸行動服務(Mobility as a Service)。

  英國政府期望透過上述交通運輸變革,能帶來更安全、便利及潔淨之交通,並實現更好的生活品質。

本文為「經濟部產業技術司科技專案成果」

※ 英國交通運輸部公布「交通運輸之未來」公眾諮詢文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8109&no=55&tp=5 (最後瀏覽日:2025/12/07)
引註此篇文章
你可能還會想看
醫療與健康資料創新應用法制研析

醫療與健康資料創新應用法制研析 資訊工業策進會科技法律研究所 2022年06月25日 壹、事件摘要   配合未來智慧醫療與精準健康之發展,民眾的健康、醫療資料將成為相關創新技術之基礎,且需整合許多異質資料庫(包括:生物資料、病歷、環境資料、基因資料等)作為相關研究與診斷基礎。然而,在創新實驗階段,個人資料保護向來是最核心之議題,如何在「創新技術」與「資料保護」間需取得衡平,於保護民眾個資權利的同時,又能滿足規範緩解或彈性化之明顯需求,便成為亟待解決的問題。   近年來,我國積極透過「法規沙盒」(Regulatory Sandbox)制度,來創造一個兼顧技術創新與有效監理的機制,例如《金融科技發展與創新實驗條例》與《無人載具科技創新實驗條例》皆是設立法規沙盒制度,在確保法律監管的前提下,依個案情形適度地鬆綁法規,為業者打造出恰當的實驗空間,以鼓勵創新發展。然而,我國於金融與交通領域訂立沙盒制度之時,關於個資法是否能被豁免,一度成為討論重點,最後二條例皆明文規定實驗進行以遵守個資法為原則,因此法規沙盒制度宜否用以緩解醫療與健康資料相關法律限制,仍堪研探;此外,醫療法規沙盒所涉及的醫療或健康資料主要落入敏感性資料之範疇,在個資法監管密度更高的情形下,更加限制了智慧醫療與精準健康產品或服務之發展,則如何突破此等醫療領域創新困境,即屬我國未來應密切關注之焦點。   職是之故,本文將研探國際上涉及醫療健康資料之機制,以作為我國法規沙盒等制度措施抑或設計其他方式運作之借鏡,讓創新者能獲有個資法等法規之規範彈性空間以進行創新活動。 貳、重點說明   以下對於英國、日本及新加坡等國制度,觀測分析其如何緩解資料法規而創造出彈性化空間,使創新者有機會藉此活用醫療健康資料,進行醫療領域之創新發展。 一、英國 (一)ICO法規沙盒   英國資訊專員辦公室(Information Commissioner's Office, ICO)於2019年推出法規沙盒計畫,希望可向利用個人資料開發具有明顯公共利益的創新產品和服務的組織,提供必要的試驗空間。在進入沙盒之前,ICO將會要求申請者簽署相關條款,並有專屬ICO沙盒成員與之聯繫,安排會議協助制訂沙盒計畫,同時也會要求申請者進行資料保護自我評估清單,以利沙盒計畫之制定[1]。   此沙盒的特色之一,在於不會完全排除資料保護規範之適用,而是著重於如何協助業者遵法,參與者能透過此計畫借助ICO在資料保護方面的專業知識和建議,從而在測試創新服務時減輕風險,並確保適當的個資保護措施臻於完備[2]。此外,參與者也將會收到一份暫緩執法聲明(statement of comfort from enforcement),亦即在參與沙盒期間,若產品或服務因疏忽而有違反資料保護相關法規之情形,只要違規行為未超出原先進入沙盒所預想的情況,便不會立即導致ICO的監管行動,暫緩程度則取決於創新團隊與ICO保持協作與對話之狀況[3]。   截至2021年2月,其尚有9個測試案例正在進行中,而與健康、醫療資料有關者為CDD服務有限公司(CDD Services)及諾華製藥的語音解決方案(Novartis Voice Enabled Solutions project)[4]。 (二)動態同意機制   「動態同意」(Dynamic Consent)是指一種基於網路與資通訊技術的即時同意程序,透過利用資通訊技術建立的動態同意網路平台,研究者得即時通知資料當事人其研究進度、研究目的變更等事項,資料當事人則得隨時修改同意範圍或撤銷同意[5]。   動態同意機制的優點,對研究者而言,在於節省許多徵詢同意所需之成本,也能清楚瞭解資料庫中的資料附加了哪種類型的同意或是資料當事人要求徵詢同意的密度[6],並且可以更加容易地整合其他多媒體技術(例如播放影片、照片與錄音)進行研究內容與風險之說明。而對於資料當事人而言,動態同意則可解決同意成本過高而不得不實施過於寬泛的概括同意之情形,從而更加保障資料主體之資料自主權[7]。   在英國,動態同意之原型係於2008年左右ENCoRe計畫提出;國際間較為有名的計畫皆實施於英國,例如曼徹斯特大學inBank團隊開發的蒐集與處理電子健康紀錄系統、牛津大學主導的參與式Rudy研究等[8]。 二、日本   日本於2018年實施「專案型沙盒」制度,建立特定不受現有法規限制之情境,使業者得於限定期間及場域內,以「新興技術」進行實證[9]。所謂「新興技術」,係指在創新事業活動中所使用具有顯著新穎性之技術或方法,且該技術或手法可創造出高附加價值者[10],而「具顯著新穎性」者,則指相較於該領域的常用技術和方法,更有新穎性且得以衍生實用化和事業化討論的技術與方法,例如AI、IoT、巨量資料、區塊鏈等[11]。   專案型沙盒中,有3件與醫療相關的案例,其中涉及個資法規範的是「以生物辨識技術了解本人意思(Digital Living Will)」一案。本案情境為考量到獨居老人數量增加,其因急救被送往醫療機關時,尚需時間確認其身分,甚至須向家屬說明治療方式且獲同意後,始得開始檢查和治療,而常有遲延急救時間之情事,故醫院及醫療業者共同申請一項專案型沙盒實證計畫,藉由「預立同意」之方式保存個人手術及檢查等意願,待患者發生急救情形時,將依指紋、手指靜脈、人臉等生物辨識技術準確且迅速地確認身分,向醫院提供患者的個人意願資料。本計畫採取的新技術,涉及日本個資法第18條、第19條及第23條規定,申請者表示將依法辦理之,例如告知參加者「獲取生物辨識資料之利用目的」、經參加者同意後始向第三方提供生物辨識資料等,並由厚生勞動省和個人情報保護委員會等主管機關進行監督[12]。 三、新加坡   新加坡於2012年10月通過《個人資料保護法》(Personal Data Protection Act 2012, PDPA)[13],同時依法設置個資保護委員會(Personal Data Protection Commission, PDPC)。該法旨在規範「非公務機關」之個人或組織對於個人資料的蒐集、利用及揭露(例如與第三方共享)等相關行為。該法第62條設計了豁免權(Exemption),個人或組織可於備妥申請文件後,向個資保護委員會預先申請尋求《個人資料保護法》任何條文之豁免;經審查批准後,個資保護委員會可以透過命令(order),在特定的規則或情況下,豁免任何個人或組織遵守本法的全部或部分規定[14]。   再者,新加坡提出「資料協作計畫」,以促進組織、政府、個人三方間資料無障礙流通,創造更多合作機會進行創新應用。該計畫可分作兩部分,首先建立「可信賴資料共享框架」(Trusted Data Sharing Framework),為企業對企業的資料交換方法步驟提供指南;其次提出「資料共享安排」(Data Sharing Arrangements)的資料法規沙盒計畫[15],排除企業以創新模式近用個人資料時發生的阻礙,「資料共享安排」係依據上述個人資料保護法第62條所賦予的豁免權,讓個人或組織可在個人資料保護委員會訂定的規則下,依照個案給予組織免除個資法部分規範(例如:不須取得當事人同意、免除跨境傳輸之限制)。故總體而言,「資料協作計畫」下的「可信賴資料共享框架」與「資料共享安排」,將由政府擔任監管角色,申請者只要符合指南建議方向,例如遵循法律、達到一定資料技術應用品質、實施資安與個資保護措施等,便可進行個人與商業資料之共享。   以「中風患者於資料共享安排(資料法規沙盒計畫)之運作」為例,醫院、志願福利組織(Voluntary Welfare Organization, VWO)[16]與行政機關之資料共享計畫,彼此之間分享病患個人資料,毋須再經患者之同意,由資料中介機構進行資料分析,以改善服務並確保有效媒合老年中風患者之援助。經分析後,志願福利組織可主動與醫院患者接觸以利其提供收入援助或社會支持,行政機關則可利用相關資訊改善政策[17]。 參、事件評析   隨著新興科技崛起,資料驅動之技術創新需求於近年大幅顯現,若個資法規範始終缺乏彈性,又無相關機制確保創新空間,我國社會經濟發展將嚴重受影響。對此,面對「創新技術」與「資料保護」間如何取得衡平的難題,各國政府透過不同規範及政策手段,給予個資法規範一定彈性,以促進國內創新與轉型的腳步,可見個資法既定規範並非絕對,重點仍在於如何做好個資保護評估及風險管控,使資料主體於創新實驗下仍可受到隱私保護。   綜觀上開國家的資料法規彈性化措施,主要以兩大方式進行,其一為「針對法規提出整體鬆綁或彈性化機制」(法規面),例如英國ICO法規沙盒、日本專案型沙盒、新加坡資料共享安排機制皆屬之,雖各國立法模式或依據有所不同,但主要仍是利用法規沙盒或性質相近之措施,於運作上賦予個資法規一定彈性。其二則為「利用技術解消資料利用障礙」(技術面),例如動態同意機制,透過科技來擴大個資法規的適法及遵法態樣。   據此,我國在研議「醫療領域宜否應用法規沙盒等制度,緩解個資法等相關法規現行規範」時,或可先肯認個資法確有(有條件地)豁免適用之餘地,且得以法規沙盒作為個資法限制之彈性機制。其次,在立法模式的選擇上,由於我國已著手立法《智慧醫療創新實驗條例》(草案)[18]或考量規劃泛用型法規沙盒,未來或可於「醫療法規沙盒」或「泛用型法規沙盒」立法過程中,研議是否豁免創新實驗有關個資法令之適用。再者,針對個資法豁免條件,有鑑於沙盒實驗期間不能忽視個人利益之隱私保障措施,故應有一套完善機制協助法規沙盒之監管,相關豁免事項及條件設計,也須考量創新、公共利益與資料當事人權利侵害之比例原則。最後,在實作方面,機關亦可協助與輔導業者引進動態同意等措施及其新技術,以利業者遵法。 [1] ICO, What will happen if our application to the Sandbox is successful?, https://ico.org.uk/for-organisations/the-guide-to-the-sandbox/what-will-happen-if-our-application-to-the-sandbox-is-successful/ (last visited Feb. 6, 2021). [2] ICO selects first participants for data protection Sandbox, https://www.computerweekly.com/news/252467504/ICO-selects-first-innovation-Sandbox-participants (last visited Feb. 6, 2021) [3] ICO, What will happen if our application to the Sandbox is successful?, https://ico.org.uk/for-organisations/the-guide-to-the-sandbox/what-will-happen-if-our-application-to-the-sandbox-is-successful/ (last visited Feb. 6, 2021). [4] ICO, Current Projects, https://ico.org.uk/for-organisations/regulatory-sandbox/current-projects (last visited Feb. 6, 2021). [5] Jane Kaye, Edgar A Whitley, David Lund, Michael Morrison, Harriet Teare & Karen Melham, Dynamic consent: a patient interface for twenty-first century research networks, European Journal of Human Genetics, 23, 141–146 (2015) [6] 動態同意平台上的研究者介面,可能顯示資料當事人對於哪種類型的研究給予何種同意(例如對於心臟病研究給予概括同意;對於癌症研究給予特定同意),允許概括同意的時候也可以註記同意期限,或設定其他限制。 [7] Rasmus Bjerregaard Mikkelsen, Mickey Gjerris, Gunhild Waldemar & Peter Sandøe, Broad consent for biobanks is best - provided it is also deep, BMC Med Ethics, 20(1),71 (2019) [8] 義大利、美國、日本與澳洲等國目前皆有實施動態同意之機制,但都是以特定疾病或研究主題為主,尚未有全國通用的動態同意系統。義大利有名為「CHRIS」的慢性病研究動態同意平台;美國有非營利組織架設名為「PEER」的基因研究動態同意平台;日本有名為「Rudy Japan」的動態同意平台;澳洲有名為「CTRL」的動態同意平台。 [9] 生産性向上特別措置法第2條第2項。 [10] 同前註。 [11] 新技術等実証の総合的かつ効果的な推進を図るための基本的な方針,頁1(2018),https://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/underlyinglaw/basicpolicy.pdf(最後瀏覽日:2021/2/10)。 [12] 〈生体認証を用いた本人意思に基づく救急医療の実証〉,首相官邸,https://www.kantei.go.jp/jp/singi/keizaisaisei/project/gaiyou7.pdf (最後瀏覽日:2021/2/19)。 [13] Personal Data Protection Act 2012, No. 26 of 2012. [14] Personal Data Protection Act 2012, Section 62. [15] Data Collaboratives Programme, https://www.imda.gov.sg/programme-listing/data-collaborative-programme (last revised Jun. 8, 2021) [16] 獨立於政府與市場運作之外的團體或組織。 [17] PDPC, Guide to Data Sharing (2018), https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Data-Sharing-revised-26-Feb-2018.pdf (last revised Jun. 8, 2021). [18] 鄭鴻達,〈政院BTC閉幕 吳政忠:推智慧醫療沙盒、生醫條例修法〉,聯合新聞網,2021/09/01,https://udn.com/news/story/7238/5715580(最後瀏覽日:2022/06/13)。

歐盟智慧財產局出版《防偽技術指南》,協助企業及早防免智財侵權風險

  歐盟智慧財產局(European Union Intellectual Property Office)之智庫「歐盟智財侵權觀察平台」(the European Observatory)於今(2021)年2月出版《防偽技術指南》(Anti-Counterfeiting Technology Guide,下稱本指南),本指南全面介紹目前市面上防偽技術的內容,技術區分成電子型、標記型、化學型、物理型、機械及數位媒體型等五大防偽技術類別,供所有有興趣了解或欲執行防偽技術的各規模、各領域企業們參考。   仿冒為全球性問題,幾乎威脅到了各領域行業的營運與生存,而全球仿冒品數量在互聯網時代之下,以每年增長15%的驚人速度上升中,已嚴重侵害了企業的品牌商譽與智慧財產權。企業雖懂得以註冊智財權的方式自我保護,但仿冒問題對企業帶來的攻擊性日益增加、防偽技術又多如牛毛且複雜,本指南彙整之資訊,尚補充了關於ISO標準的相關技術資訊,如《 ISO 22383:2020 》(產品與文件之安全性、彈性、真實性與完整性-重要產品認證方案之選擇與性能評估標準)。這些資訊可以跟防偽技術一併使用,精進企業整體防偽策略。   此外,本指南對於彙整出的每項防偽技術或ISO的相關技術標準,都予以清楚介紹,並說明技術主要特性、優缺點、用途、實施條件以及相關成本,企業可透過本指南比較各式防偽技術,從而選定最適合其業務性質的防偽技術,及早防範仿冒風險,以保護企業之業務營運與品牌發展。

歐盟執委會發布《受禁止人工智慧行為指引》

歐盟執委會發布《受禁止人工智慧行為指引》 資訊工業策進會科技法律研究所 2025年02月24日 歐盟繼《人工智慧法》[1](Artificial Intelligence Act, 下稱AI Act)於2024年8月1日正式生效後,針對該法中訂於2025年2月2日始實施之第5條1,有關「不可接受風險」之內容中明文禁止的人工智慧行為類型,由歐盟執委會於2025年2月4日發布《受禁止人工智慧行為指引》[2]。 壹、事件摘要 歐盟AI Act於2024年8月1日正式生效,為歐盟人工智慧系統引入統一之人工智慧風險分級規範,主要分為四個等級[3]: 1. 不可接受風險(Unacceptable risk) 2. 高風險(High risk) 3. 有限風險,具有特定透明度義務(Limited risk) 4. 最低風險或無風險(Minimal to no risk) AI Act之風險分級系統推出後,各界對於法規中所說的不同風險等級的系統,究竟於實務上如何判斷?該等系統實際上具備何種特徵?許多內容仍屬概要而不確定,不利於政府、企業遵循,亦不利於各界對人工智慧技術進行監督。是以歐盟本次針對「不可接受風險」之人工智慧系統,推出相關指引,目的在明確化規範內涵規範,協助主管機關與市場參與者予以遵循。 貳、重點說明 一、AI Act本文第5條1(a)、(b)-有害操縱、欺騙與剝削行為 (一)概念說明 本禁止行為規定旨在防止透過人工智慧系統施行操縱與剝削,使他人淪為實現特定目的工具之行為,以保護社會上最為脆弱且易受有害操控與剝削影響的群體。 (二)禁止施行本行為之前提要件 1.該行為必須構成將特定人工智慧系統「投放於歐盟市場」(placing on the market)[4]、「啟用」(putting into service)[5]或「使用」(use)[6]。 2.應用目的:該人工智慧系統所採用的技術具有能實質扭曲個人或團體行為的「目的」或「效果」,此種扭曲明顯削弱個人或團體做出正確決定的能力,導致其做出的決定偏離正常情形。 3.技術特性:關於(a)有害的操縱與欺騙部分,係指使用潛意識(超出個人意識範圍)、或刻意操控或欺騙的技術;關於(b)有害地利用弱勢群體部分,是指利用個人年齡、身心障礙或社會經濟狀況上弱點。 4.後果:該扭曲行為已造成或合理可預見將造成該個人、另一人或某群體的重大傷害。 5.因果關係:該人工智慧系統所採用的技術、個人或團體行為的扭曲,以及由此行為造成或可合理預見將造成的重大傷害之間,具備相當因果關係。 二、AI Act本文第5條1(c)-社會評分行為 (一)概念說明 本禁止行為規定旨在防止透過人工智慧系統進行「社會評分」可能對特定個人或團體產生歧視和不公平的結果,以及引發與歐盟價值觀不相容的社會控制與監視行為。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該人工智慧系統必須用於對一定期間內,自然人及群體的社會行為,或其已知、預測的個人特徵或人格特質進行評價或分類。 3.後果:透過該人工智慧系統所產生的社會評分,必須可能導致個人或群體,在與評分用資料生成或蒐集時無關的環境遭受不利待遇,或遭受與其行為嚴重性不合比例的不利待遇。 三、AI Act本文第5條1(d)-個人犯罪風險評估與預測行為 (一)概念說明 本禁止行為規定之目的,旨在考量自然人應依其實際行為接受評判,而非由人工智慧系統僅基於對自然人的剖析、人格特質或個人特徵等,即逕予評估或預測個人犯罪風險。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該人工智慧系統必須生成旨在評估或預測自然人施行犯罪行為風險的風險評估結果。 3.後果:前述風險評估結果僅依據於對自然人的剖析,或對其人格特質與個人特徵的評估。 4.除外規定:若人工智慧系統係基於與犯罪活動直接相關的客觀、可驗證事實,針對個人涉入犯罪活動之程度進行評估,則不適用本項禁止規定。 四、AI Act本文第5條1(e)-無差別地擷取(Untargeted Scraping)臉部影像之行為 (一)概念說明 本禁止行為規定之目的,旨在考量以人工智慧系統從網路或監視器影像中無差別地擷取臉部影像,用以建立或擴充人臉辨識資料庫,將嚴重干涉個人的隱私權與資料保護權,並剝奪其維持匿名的權利。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該行為以建立或擴充人臉辨識資料庫為目的。 3.技術特性:填充人臉辨識資料庫的方式係以人工智慧工具進行「無差別的擷取行為」。 4.因果關係:建立或擴充人臉辨識資料庫之影像來源,須為網路或監視器畫面。 五、AI Act本文第5條1(f)-情緒辨識行為 (一)概念說明 本禁止行為規定之目的,旨在考量情緒辨識可廣泛應用於分析消費者行為,以更有效率的手段執行媒體推廣、個人化推薦、監測群體情緒或注意力,以及測謊等目的。然而情緒表達在不同文化、情境與個人反應皆可能存在差異,缺乏明確性、較不可靠且難以普遍適用,因此應用情緒辨識可能導致歧視性結果,並侵害相關個人或群體的權利,尤以關係較不對等的職場與教育訓練環境應加以注意。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該系統係用於推斷情緒。 3.因果關係:該行為發生於職場或教育訓練機構。 4.除外規定:為醫療或安全目的而採用的人工智慧系統不在禁止範圍內。例如在醫療領域中,情緒辨識可協助偵測憂鬱症、預防自殺等,具有正面效果。 六、AI Act本文第5條1(g)-為推測敏感特徵所進行之生物辨識分類行為 (一)概念說明 本禁止行為規定之目的,旨在考量利用人工智慧之生物辨識分類系統(Biometric Categorisation System)[7],可依據自然人的生物辨識資料用以推斷其性取向、政治傾向、信仰或種族等「敏感特徵」在內的各類資訊,並可能在當事人不知情的情況下依據此資訊對自然人進行分類,進而可能導致不公平或歧視性待遇。 (二)禁止施行本行為之前提要件 1.該行為必須屬於將特定人工智慧系統「投放於歐盟市場」、「啟用」或「使用」。 2.應用目的:該行為係針對個人進行分類;而其辨識目的係為推斷其種族、政治傾向、工會成員身分、宗教或哲學信仰、性生活或性取向等。 3.技術特性:該系統必須為利用人工智慧,並依據自然人的生物辨識資料,將其歸類至特定類別之生物辨識分類系統。 4.因果關係:前述分類依據為其生物辨識資訊。 5.除外規定:本項禁止規定未涵蓋對合法取得的生物辨識資料進行標記(Labelling)或過濾(Filtering)行為,如用於執法目的等。 七、AI Act本文第5條1(h)-使用即時遠端生物辨識(Remote Biometric Identification, RBI)系統[8]執法[9]之行為 (一)概念說明 本禁止行為規定之目的,旨在考量在公共場所使用即時RBI系統進行執法,可能對人民權利與自由造成嚴重影響,使其遭受監視或間接阻礙其行使集會自由及其他基本權利。此外,RBI系統的不準確性,將可能導致針對年齡、族群、種族、性別或身心障礙等方面的偏見與歧視。 (二)禁止施行本行為之前提要件 1.該行為必須涉及對即時RBI系統的「使用」行為。 2.應用目的:使用目的須為執法需要。 3.技術特性:該系統必須為利用人工智慧,在無需自然人主動參與的情況下,透過遠距離比對個人生物辨識資料與參考資料庫中的生物辨識資料,從而達成識別自然人身份目的之RBI系統。 4.因果關係:其使用情境須具備即時性,且使用地點須為公共場所。 參、事件評析 人工智慧技術之發展固然帶來多樣化的運用方向,惟其所衍生的倫理議題仍應於全面使用前予以審慎考量。觀諸歐盟AI Act與《受禁止人工智慧行為指引》所羅列之各類行為,亦可觀察出立法者對人工智慧之便利性遭公、私部門用於「欺詐與利用」及「辨識與預測」,對《歐盟基本權利憲章》[10]中平等、自由等權利造成嚴重影響的擔憂。 為在促進創新與保護基本權利及歐盟價值觀間取得平衡,歐盟本次爰參考人工智慧系統提供者、使用者、民間組織、學術界、公部門、商業協會等多方利害關係人之意見,推出《受禁止人工智慧行為指引》,針對各項禁止行為提出「概念說明」與「成立條件」,期望協助提升歐盟AI Act主管機關等公部門執行相關規範時之法律明確性,並確保具體適用時的一致性。於歐盟內部開發、部署及使用人工智慧系統的私部門企業與組織,則亦可作為實務參考,有助確保其自身在遵守AI Act所規定的各項義務前提下順利開展其業務。 [1]European Union, REGULATION (EU) 2024/1689 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL (2024), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401689 (last visited Feb. 24, 2025). [2]Commission publishes the Guidelines on prohibited artificial intelligence (AI) practices, as defined by the AI Act., European Commission, https://digital-strategy.ec.europa.eu/en/library/commission-publishes-guidelines-prohibited-artificial-intelligence-ai-practices-defined-ai-act (last visited Feb. 24, 2025). [3]AI Act, European Commission, https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai (last visited Feb. 24, 2025). [4]依據本指引第2.3點,所謂「投放於歐盟市場」(placing on the market),係指該人工智慧系統首次在歐盟市場「提供」;所謂「提供」,則係指在商業活動過程中,以收費或免費方式將該AI系統供應至歐盟市場供分發或使用。 [5]依據本指引第2.3點,所謂「啟用」(putting into service),係指人工智慧系統供應者為供應使用者首次使用或自行使用,而於歐盟內供應人工智慧系統。 [6]依據本指引第2.3點,「使用」(use)之範疇雖未在AI Act內容明確定義,惟應廣義理解為涵蓋人工智慧系統在「投放於歐盟市場」或「啟用」後,其生命週期內的任何使用或部署;另參考AI Act第5條的規範目的,所謂「使用」應包含任何受禁止的誤用行為。 [7]依據AI Act第3條(40)之定義,生物辨識分類系統係指一種依據自然人的生物辨識資料,將其歸類至特定類別之人工智慧系統。 [8]依據AI Act第3條(41)之定義,RBI系統係指一種在無需自然人主動參與的情況下,透過遠距離比對個人生物辨識資料與參考資料庫中的生物辨識資料,從而達成識別自然人身份目的之人工智慧系統。 [9]依據AI Act第3條(46)之定義,「執法(law enforcement)」一詞,係指由執法機關或其委任之代表,代替其執行目的包括預防、調查、偵測或起訴刑事犯罪,或執行刑事處罰,並涵蓋防範與應對公共安全威脅等範疇之行為。 [10]CHARTER OF FUNDAMENTAL RIGHTS OF THE EUROPEAN UNION, Official Journal of the European Union, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12012P/TXT (last visited Feb. 24, 2025).

雲端時代資料保險機制之解析

雲端時代資料保險機制之解析 科技法律研究所 2013年12月05日 壹、前言   資訊時代,資訊應用所帶來的風險幾乎無可迴避,且往往帶來莫大衝擊;尤其在網路應用普及之後,大量資料透過網路傳輸、流通而暴露於資訊安全的風險當中,縱有再有高層級的防護,也無法使資料受損或漏失的風險機率降至零,因此有論者以為,對於無法藉由資訊安全措施加以避免的「殘餘風險」(Residual Risk),應由「保險機制」予以移轉。本研究特探討本議題,以呼應目前日益進展的保險產品發展趨勢。   此類的保險機制,一般稱為資料保險,專門填補網路應用所造成的風險,諸如網路安全(Network security)之欠缺所造成的損失,或者隱私(Privacy)被害所造成的損失。依據產業觀察者意見,此類保險產品的市場正有逐漸擴張的趨勢,尤其是對於健康照護服務(Health care)以及中小型的業者而言,此類保險對於風險管理服務可以發揮長足的作用,其能夠填補資料被害的通知成本、信用監控以及加強資料防護的成本[1]。   本文以雲端運算應用的興起為背景,觀察相應保險機制的演進及發展;以及其對於產業發展而言,為何被視為不可或缺的配套機制,進一步檢視我國推動資料保險的可行性與條件。 貳、資料保險機制的發展 一、資料保險的種類   用來填補資料受害之損害的保險,一般被稱為「資料保險」,尚可見以「網路保險」或「隱私保險」稱之。與其直接定義何謂「資料保險」,不如分析此保險的涵蓋範圍。此類保險早在十幾年前出現,當時其保險範圍,是填補資料被害所引發的損害賠償責任[2]。   財產保險可分成兩大類型,一類是一般的財產損害,即保險事故發生導致被保險人的財產減損或喪失,承保此類財產損失之保險,即英美法系所稱之「第一方保險」(First-party coverage)。另一類則是責任保險,即保險事故發生導致被保險人應負擔法律上責任或契約上損害賠償責任,承保因被保險人應負擔責任之財產損失,即所稱之「第三方保險」(Third-party coverage)。   在資料應用環境中,因資料受害導致損害大抵可依上述區分。當遭遇網路犯罪的損害、毀壞(Destroys)或是剝奪被保險人對於資料的使用權限,則屬於第一方財產損失。另一方面,當被保險人所保護、監管(Custody)或控制的第三人資料或資訊,遭遇網路犯罪損害、毀壞或竊取時,將使被保險人必須承受對第三方負擔損害賠償責任、並支付相關費用,此屬於第三方財產損失,例如入侵資訊系統而竊取信用卡資訊、受保護的個人資料、及銀行的帳戶號碼,又如妨礙有合法權限的第三人近用系統,以及違反法規所要求而未向第三人通知資料侵害等…[3]。 二、資料受害所致損害是否得請求保險賠償過往有很大爭議   傳統的財產保險,由於未指明承保因資料被害所致損失,往往會在被保險人因資料被害導致財產損失而請求保險賠償時,發生很大的爭議。主要的原因是,傳統的財產保險其設計原則,是以被保險人對於有形財產的「保險利益」作為「保險標的」,並以有形財產受損來估算保險損害,並未考量到資料等無形財產。因此,起因於資料或類似形態的程式、軟體之缺損所致的損害,是否可能在傳統財產的保險範圍內,頗有疑義,且司法實務上的意見相當分歧,茲整理如下。 (一)有利於被保險人的實務見解   在America Guarantee & Liability Insurance Co. v. Ingram-Micro[4].中,Ingram-Micro因幾分鐘的電力中斷,導致電腦資產與資料的喪失而嚴重影響正常的業務運作,遂依業務中斷保險(Business-interruption insurance)請求保險賠償,但遭受保險公司拒絕,保險公司提起訴訟並宣稱承保範圍未包含電腦與其他資產。地方法院認為,被保險人客製軟體程式的喪失,構成「具體損害」,具體損害不限於電腦迴路的被有形損毀或傷害,也會包含無法近用(Loss of access)、無法使用(Loss of use)以及功能喪失。   另一案Lambrecht & Associates, Inc. v. State Farm Lloyds[5],保險公司認為電腦病毒感染所造成的損失,非有形損失,因而拒絕保險給付。法院認為,本案之電腦系統以及儲存的資料皆因病毒感染而毀壞、被置換(Replaced),此種結果,等於電腦系統完全無法接收、發送或回復任何形態的資訊,而完全失去作為電腦系統的效用;因此未接受保險公司的主張。   近期一例為責任保險爭議。Retail Ventures, Inc. v. Nat'l Union Fire Ins. Co.[6]中,Retail Venture是DSW鞋子盤商,2005年時它的電腦系統遭駭客入侵,共有百萬筆的客戶資料遭不當下載且許多資料夾也被翻閱過。由於DSW向Nat'l Union購買商業竊盜險,在其承保項目中包括電腦與資金移轉詐欺(Computer & Fund transfer fraud coverage),DSW遂向保險公司請求保險賠償,主張此次駭客入侵所造成的損失有530萬元之多,但保險公司拒絕給付賠償金。於是DSW對保險公司提起訴訟,地方法院認定保險公司應支付保險賠償,保險公司不服,提起上訴至巡迴法院,巡迴法院認為,條款規定雖是限於該損失是由保險事故「直接造成」(Resulting directly from),但這不代表該保險事故必須是造成損失的「唯一」(Solely)與「立即」(Immediately)的原因[7],因此維持地方法院的判決。 (二)有利於保險人的實務見解   在America Online, Inc. v. St. Paul Mercury Insurance Co.中,由於America Online(AOL)所生產的網路接取軟體AOL 5.0據稱會毀壞用戶的電腦系統,因而被客戶訴訟求償,AOL依責任保險內容,轉而請求保險公司應替其進行訴訟防禦,遭保險公司拒絕。為此,AOL對保險公司提起訴訟,法院遂檢視保險契約中是否載明保險公司有進行訴訟防禦的義務。契約中將情境限於「有形」財產損失,法院解釋,從字義上一般不會認為電腦資料、軟體及系統是「有形」財產,因為有形財產應是指可以觸摸(Be touched),但電腦資料、軟體及系統無法被感官感知,因此是無形財產。此外契約中亦有「功能降低除外條款」,意即,不良品或者危險產品所造成的損害非有形,故被排除在承保範圍內。法院據此否認AOL的主張[8]。 三、「新」資料保險產品應運而生   從上述實務案例的觀察,作成不利於被保險人判決結果的法院,是直接認定電腦資料、軟體與系統為無形財產。反之,作成有利於被保險人判決結果的法院,是將「資料」(程式或軟體)與「電腦系統」合為觀之,而認定電腦系統為有形財產,把電腦系統無法發揮正常作用視為具體損害。即使判決結果可能有利於被保險人,但是解釋方式卻較為迂迴,也顯得被保險人相當艱辛。 參、外國資料保險機制之發展實例與推動   雲端運算發展日益普遍日後,可以透過網際網路提供資訊服務(例如儲存空間、應用程式等),「資料」已然不附載在特定或固定的載體(電腦系統)上。因應整體資訊應用形態的轉變,國內外市場上逐漸有相關資料保險產品推出的案例。 一、實例   第一個例子,MSPAlliance是一個資源管理服務業者暨認證聯盟,於2013年4月與保險經紀公司Lockton 合作,設計「雲端暨管理服務」保險(Cloud and Managed Services Insurance),讓其聯盟會員提供資訊服務時得以購買此保險;承保項目包括因網路攻擊、資料滅失或系統故障而導致應負擔損害賠償責任,以及因技術錯誤或無法作用(Tech Errors & Omissions)所導致的損害賠償責任,亦包含在內。至於被保險人的資格要求,則限定是聯盟會員,且必須通過Unified Certification Standard (UCS)驗證。事實上,要求被保險人取得一定的驗證,是保險風險管理很重要的ㄧ環。   第二個例子,雲端保險服務平台Cloudinsure於2013年2月宣布與保險經紀公司Lockton合作,擬設計適於雲端環境的隱私與安全責任保險方案。其保險產品內容主要在確保雲端服務提供者可履行在契約、或服務水準協議(Service Level Agreements)中的承諾,再者也能依據其客戶存放於雲端環境之資料的風險層級,給予金錢防護。 第三個例子,與前兩例不同,是針對一般的資訊服務使用者來設計。保險經紀公司達信(Marsh)於2012年6月針對雲端環境的企業使用者,開發新的保險方案CloudProtect。被保險人是採用雲端服務的中小型企業,承保項目包括:因雲端服務中斷所致的營運收入損失(Loss of income)、因採購新的雲端服務提供者所產生的相關費用支出、因資料轉換至新的雲端服務所產生的相關費用支出。 二、政府的參與及投入推動   美國的國家技術標準局(Institute of Standards and Technology, NIST)在規劃新網路時代藍圖時,把持續促進資料「保險」(Cyber Insurance),列為關鍵的一角。從這個角度而言,保險不僅具有轉移風險與填補損害的功能,更具有正面積極的意義,可作為新興技術發展的後盾。對於NIST這樣的主張,美國保險人協會(American Insurance Association)也予以呼應,認為針對網路應用環境而持續開發各種保險產品,是勢在必行的方向。 (一)政策推導   美國證券交易委員會指引(2011年),建議公司若為因應資安風險而購買保險產品,應列入資訊揭露範圍。此被認為是間接鼓勵企業購買相關保險產品的具體措施之一。 (二)政府機關作為被保險人購買資料保險之例   美國有以政府機關名義購買資料相關保險之例,蒙大拿(Montana State Government)購買「網路資料安全保險」(Cyber/Data Information Security Insurance),為期一年(2012年7月1日至2013年7月1日),保險項目包括:資訊安全責任(每次事故保險賠償上限200萬美元)、行政罰款(每次事故保險賠償上限200萬美元)、損害通知支出(每次事故保險賠償上限100萬美元)、網站媒體披露支出(每次事故保險賠償上限200萬美元)、每次保險事故發生以200萬美元為總保險賠償限額。此案之保險業者為Beazley,保險經紀人為Alliant Insurance Services。值得特別注意的是,保險項目當中包含損害通知支出,此是呼應了美國相關法令要求業者必須於獲悉資安事故時踐行通知相關的資料主體。   資安事故的確實可能使政府機關蒙受莫大損失,美國南卡羅萊納州稅務局(South Carolina Department of Revenue)2012年發生駭客攻擊事件,州政府花費約2000萬美元收拾殘局,其中1200萬美元用來作為市民身份被竊後的信用活動監控,其他則用來發送被害通知、資安強化措施、及建立數位鑑識團隊、資安顧問。 肆、結論-我國推動相關資料保險機制可行性之總合評析   現階段我國相關保險市場的現況,為因應我國個人資料保護法的通過與正式實施,也有推出資料相關保險產品,目標客群為企業,以協助企業因應觸及個人資料可能產生對他人的損害賠償責任、及填補其他附帶損害為主要訴求。至於,針對業者(被保險人)因提供資訊服務過程中的資料被害、毀損滅失所導致營業損失(營運中斷、負擔契約上損害賠償責任)之損害填補,似尚未有相關保險產品推出。考其原因,是保險業者對於此種因無形財產(資料)所導致損害的保險賠償模式,尚未累積足夠的經驗,也缺乏相關精算數據的掌握,因而不敢貿然承作,另一方面,保險業者本身也擔憂無足夠資力因應大規模的保險事故。 對此現象,我國主責資訊服務產業推動的有關政府部門,也思及政府投入參與資料保險機制,例如推動以機關為被保險人而購買相關的資料保險,藉以活絡資料保險市場;此種構想,在法律層面並無疑義,此乃保險賠償與國家賠償機制雖有各自目的,但未有所衝突[9]。然而,實際操作上,必須考量政府機關資訊系統是否能通過保險業者的保險風險查核、是否有足夠的預算足以支付保險費用、以及決策單位是否能有效與資訊業務單位溝通以評估購買此類保險的需求...等諸多問題。   事實上,我國相關資料保險市場要邁向成熟發展,尚待多方努力,除保險業者本身規劃並提出合適的保險產品之外,參酌國外經驗,保險經紀公司也能扮演一定角色,可針對客戶需求量身訂作風險評鑑、研提最符合的保險方案,並藉客戶共同需求而匯聚保險風險共同團體。政府所扮演之角色,除直接以政策推導之外,尚能在若干條件齊備之後實際參與保險機制,其後續方向值得關注。 [1]Collin J. Hite, Top lawyers on trends and key strategies for the upcoming year the ever-changing scope of insurance law, Aspatore Feb. 2013. [2]http://www.computerweekly.com/news/2240202703/An-introduction-to-cyber-liability-insurance-cover (last visited at Oct. 24, 2013) [3]Jack Montgomery, Cybercrime losses and insurance for property damage and third-party claims, Maine Bar Journal, Summer 2012, p. 159. [4]Civ. 99-185 TUC ACM, 2000 U.S. Dist. Lexis 7299 (D. Ariz., April 19, 2000). [5]Lambrecht & Associates, Inc. v. State Farm Lloyds, 119 S.W.3d 16, 25 (Tex. App. 2003). [6]Retail Ventures, Inc. v. Nat'l Union Fire Ins. Co. of Pittsburgh, Pa., 691 F.3d 821 (6th Cir. 2012). [7]Retail Ventures, Inc. v. Nat'l Union Fire Ins. Co. of Pittsburgh, Pa., 691 F.3d 821 (6th Cir. 2012), p.13. [8]America Online, Inc. v. St. Paul Mercury Ins. Co., 207 F. Supp. 2d 459 - Dist. Court, ED Virginia 2002, P.461-462. [9]請參考96年法務部法律字第0960003420號函。

TOP