英國交通運輸部公布「交通運輸之未來」公眾諮詢文件

  英國交通運輸部及聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV)於2018年7月30日公布「交通運輸之未來」公眾諮詢文件(Future of Mobility-Call for Evidence),提及未來之交通運輸趨勢:

(1) 更加潔淨之交通運輸工具(cleaner transport):因電池價格下降、電動車技術之改善、開發替代燃料等因素,可減少現有交通工具之碳排放,並作為後續新技術研發基礎。英國政府已明確表示預計於2040年前讓新車及貨車實現零碳排目標。
(2) 自動化(automation):因感測器技術進步以及演算法和人工智慧之快速發展,使交通運輸自動化程度大幅提升。英國政府預計2021年可讓完全自動化駕駛車輛於道路行駛。
(3) 資料及聯結(data and connectivity):未來聯網車輛間可互聯,亦可與交通號誌互聯,透過即時路況告知,以避免道路壅塞。
(4) 新模式(new modes):英國已使用無人機於緊急服務或基礎設施勘查,未來可能有垂直起降之車輛出現,而計程車及公車之分別亦逐漸模糊。
(5) 交通運輸共享化(shared mobility):利用共享車輛可降低交通壅塞及廢氣排放,如公共自行車、商業化之車輛共乘。
(6) 不斷轉變的消費者態度(changing consumer attitudes):消費者已漸漸期待所有交通工具的預約叫車及支付,皆可透過手機進行,主管機關則應考量消費者需求,確保相關交通服務的利用。
(7) 新商業模型(new business models):未來交通運輸已有新商業模式出現,如公共運輸行動服務(Mobility as a Service)。

  英國政府期望透過上述交通運輸變革,能帶來更安全、便利及潔淨之交通,並實現更好的生活品質。

本文為「經濟部產業技術司科技專案成果」

※ 英國交通運輸部公布「交通運輸之未來」公眾諮詢文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8109&no=55&tp=5 (最後瀏覽日:2025/12/04)
引註此篇文章
你可能還會想看
加拿大隱私主管機關發布個人資料保存與處理指引文件

  在世界各國,無論是公務機關或非公務機關,均無可避免地大量蒐集個人資料,這些資料包括一般民眾、雇員、顧客或潛在客戶等。對此,加拿大隱私委員會辦公室(Office of the Privacy Commissioner of Canada,簡稱OPC)發布關於「個人資料保存與處理指引文件:原則與良好實作」(Personal Information Retention and Disposal:Principles and Best Practices),以協助聯邦機構與私人機構對組織內部保有之個人資料,做好妥善保存與處理。   OPC建議組織應在內部制定相關管理政策與程序,並於指引文件中提出11項參考要點,其中包括1.是否定期審查蒐集個人資料與保有目的之關連與妥適性?多久審查一次;2.對於保有之個人資料及保存目的是否進行清查與盤點?多久確認一次?3.個人資料儲存的形式與地點為何?是否有備份?4.法律是否有規定最低保存期限?5.組織如何處理個人資料與相關備份檔案?6.對於儲存個人資料之裝置或設備,是否採行適當地安全維護措施?7.個人資料保管與處理相關政策的核決人為誰?8.對於利用資料生命週期追蹤資料,是否存在適當管制程序?9.內部員工是否了解並熟悉組織關於個人資料保存與處理之政策規定?;是否有制定文件銷毀之安全措施?10.資料等候處理期間是否受到安全妥善之保管?11.對於使用資料之第三方,是否有透過合約或其他機制進行有效監督管控措施?是否制定定期查核機制?等,期以協助組織掌握政策與程序制定要領。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

GPL(General Public License,通用公共許可證)即將進行更新修訂

  FSF( Free Software Foundation,自由軟體基金會)於日前公佈,將針對現行版本GPL Version 2進行更新修訂。由於GPL Version 2自1991 年使用至今未曾修改過,隨著軟體開發技術日新月異,新興網路應用議題亦不斷產生,故確時有必要更新修訂。FSF預定在2006年第一週會公布GPL v3草案,詳細說明每一條條文修改的原因及影響,並提供予IT產業、軟體使用者、以及和GPL v3有利害關係的各界人士,共同彙集多方的意見,以期獲得更廣大的效益。   然改寫GPL v3實屬不易。GPL是世界性的授權條款,但現今世界各國的著作權法與專利法等相關法令規範不一,再加上新興的網路應用技術與模式,GPL v3新規範應儘可能將上述要項考量納入增訂,以避免引發爭議;若是相關爭議順利解決的話,預料2007年年初就可將GPL v3擬訂完成。

法國CNIL認Google於Gmail中投放之偽裝廣告及個人化廣告因欠缺當事人有效同意而違法,開罰3.25億歐元

法國國家資訊與自由委員會(Commission Nationale de l’Informatique et des Libertés, CNIL)於2025年9月1日針對一起由歐洲數位權利中心(noyb - The European Center for Digital Rights)提出的申訴做成決議,指Google未經Gmail使用者同意,將廣告偽裝為電子郵件進行「偽裝廣告」(Disguised Ads)投放,以及在對Gmail使用者投放個人化廣告前,未能於Gmail帳號申請流程中提供當事人提供較少cookies、選擇非個人化之通用廣告(generic ads)的選項,違反了《電子通訊法》(code des postes et des communications électroniques)與《資訊與自由法》(loi Informatique et Libertés)中關於歐盟《電子隱私指令》(ePrivacy Directive)之施行規定,對Google裁處了3.25億歐元的罰鍰,並要求改善。以下節錄摘要該裁決之重點: 一、 偽裝成電子郵件的偽裝廣告與電子郵件廣告均須獲當事人同意始得投放 歐盟《電子隱私指令》第13條1項及法國《電子通訊法》規定,電子郵件直接推銷(direct marketing)僅在其目標是已事先給予同意的使用者時被允許。CNIL,依循歐盟法院(CJEU)判例法(C-102/20)見解,認為若廣告訊息被展示在收件匣中,且形式類似真實電子郵件,與真實電子郵件相同位置,則應被認為是電子郵件直接推銷,須得到當事人之事前同意。因此,CNIL認定偽裝廣告即便技術上不是狹義的電子郵件,僅僅因其在通常專門用於私人電子郵件的空間中展示,就足以認為這些廣告是透過使用者電子郵件收件匣傳遞的廣告,屬於電子郵件廣告,而與出現在郵件列表旁邊且獨立分開的廣告横幅不同,後者非屬電子郵件廣告。 二、 Cookie Wall下當事人的有效同意:「廣告類型」的選擇、服務申請流程的隱私設計與資訊透明 CNIL參酌歐盟個人資料保護委員會(European Data Protection Board, EDPB)第2024/08號關於「同意與付費模式」意見,認為同意接受廣告在特定條件下得作為使用Gmail服務的條件。換言之,以「cookie wall」(註:拒絕cookie的蒐集即無法獲得服務之網站設計)取得之當事人「同意」,非當然不自由或無效。CNIL認為,在免費服務的框架下,cookie wall在維持提供服務與服務成本之間的經濟平衡上,要求服務申請者須接受投放廣告的cookie是合法的。惟CNIL認為,這不代表Google可以任意決定所蒐集的cookies和相應廣告模式的類型。 CNIL要求,當事人在cookie wall的框架內仍應享有選擇自由,才能取得蒐集為投放個人化廣告之cookies的當事人有效同意,亦即:在個人化廣告處理更多個資和對當事人造成更多風險的情況下,當事人應被給予機會選擇「等值的替代選項」,亦即通用廣告,並完全且清晰地了解其選擇的價值、範圍及後果。 然而,CNIL發現,Google將與廣告個性化相關的cookies拒絕機制設計得比接受機制更複雜,實際上阻礙了使用者拒絕隱私干預程度更高的cookies。這種拒絕途徑偏袒了允許個人化廣告的cookies的同意,從而影響了當事人的選擇自由。CNIL也發現,Google從未以明確方式告知使用者建立Gmail帳戶時面臨cookie wall,以及對此使用者享有甚麼選擇,而其提供的資訊更引導使用者選擇個人化廣告,導致選擇一般廣告的機會遭到犧牲。 三、 為何不是愛爾蘭資料保護委員會(Data Protection Commission, DPC)管轄? GDPR設有「單一窗口機制」,依據該合作機制,對Google進行的GDPR調查,應由作為主任監管機關(Lead Supervisory Authority)的愛爾蘭DPC管轄。惟在本案,CNIL認為並不適用於單一窗口機制。因為與cookies使用及電子推銷相關的處理並非屬於GDPR範疇,而是適用電子隱私指令,CNIL對法國境內的cookies使用及電子推銷處理享有管轄權。此爭議反映出即便GDPR旨在確保標準化單一市場內的數位管制,但尚不足以弭平成員國間監管強度之差異。

TOP