英國交通運輸部公布「交通運輸之未來」公眾諮詢文件

  英國交通運輸部及聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV)於2018年7月30日公布「交通運輸之未來」公眾諮詢文件(Future of Mobility-Call for Evidence),提及未來之交通運輸趨勢:

(1) 更加潔淨之交通運輸工具(cleaner transport):因電池價格下降、電動車技術之改善、開發替代燃料等因素,可減少現有交通工具之碳排放,並作為後續新技術研發基礎。英國政府已明確表示預計於2040年前讓新車及貨車實現零碳排目標。
(2) 自動化(automation):因感測器技術進步以及演算法和人工智慧之快速發展,使交通運輸自動化程度大幅提升。英國政府預計2021年可讓完全自動化駕駛車輛於道路行駛。
(3) 資料及聯結(data and connectivity):未來聯網車輛間可互聯,亦可與交通號誌互聯,透過即時路況告知,以避免道路壅塞。
(4) 新模式(new modes):英國已使用無人機於緊急服務或基礎設施勘查,未來可能有垂直起降之車輛出現,而計程車及公車之分別亦逐漸模糊。
(5) 交通運輸共享化(shared mobility):利用共享車輛可降低交通壅塞及廢氣排放,如公共自行車、商業化之車輛共乘。
(6) 不斷轉變的消費者態度(changing consumer attitudes):消費者已漸漸期待所有交通工具的預約叫車及支付,皆可透過手機進行,主管機關則應考量消費者需求,確保相關交通服務的利用。
(7) 新商業模型(new business models):未來交通運輸已有新商業模式出現,如公共運輸行動服務(Mobility as a Service)。

  英國政府期望透過上述交通運輸變革,能帶來更安全、便利及潔淨之交通,並實現更好的生活品質。

本文為「經濟部產業技術司科技專案成果」

※ 英國交通運輸部公布「交通運輸之未來」公眾諮詢文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8109&no=55&tp=5 (最後瀏覽日:2025/12/01)
引註此篇文章
你可能還會想看
基因改造 70g胖老鼠減重成為40g

  中研院今天發表一份研究成果:利用「基因改造」,成功的將七十公克的胖老鼠減重到四十公克,而且沒有什麼副作用。未來經過人體實驗,將有機會成為人類減肥的最新方法。    研究團隊發現,脂肪細胞活性與細胞內的粒腺體含量有關,而「粒腺體」就相當於細胞的「火力發電廠」,專門幫助代謝熱量、並轉化為能量供體內使用。當脂肪細胞含有大量粒線體的時候,就可以自行代謝體內所堆積的油脂、健康瘦身。計劃主持人、分子生物研究所副研究員李英惠解釋:利用藥物刺激,可以誘發體內的一種「Gs蛋白」,在老鼠胚胎上進行基因改造,或是後天以藥物餵食老鼠,活化體內GS蛋白質,透過各種方式,証明GS蛋白質的確可以增加脂肪細胞中粒腺體含量和活性,慢慢的代謝掉細胞內堆積的油脂。研究團隊還意外發現,改造後的老鼠,不但不容易發胖,而且平均壽命還增加了20%。    目前動物實驗已經證明:體內具有這種改造過的脂肪細胞,不但不容易發胖,壽命也可以增長。未來經過人體實驗,將有可能成為人類「健康減肥」的最新方法。

何謂「介入權」?

  美國拜杜法雖下放政府補助研發成果給予執行單位,但基於針對受補助者行使研發成果時若未能妥適授權運用,政府得行使「介入權」(march-in rights)。所謂的介入權,是指補助機關事後可以因為執行單位授權或運用不當,而選擇強制介入調整其授權內容。但補助機關採用介入權是有前提要件的,35 U.S.C. § 203規定:「受補助者在適當的合理期間內,未能採取有效的措施以達到該創新的實際應用或使用…」或者強制授權是「其他聯邦法律規定的保護公共健康、安全需要或公共使用」所必要者。相對我國則有經濟部於「經濟部科學技術研究發展成果歸屬及運用辦法」第21條規定政府介入權發動之要件,其與美國法制有異曲同工之妙。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

歐盟「未來工廠」發展計畫

  歐盟執行委員會依展望2020 (Horizon 2020)於2016年4月14日至15日召開未來工廠公私夥伴合作 (FoF cPPP)研討會,並展示目前資助的研究與創新成果,透過本計畫將協助歐盟內製造業,特別是中小企業,將資通訊及關鍵技術與整個工廠生產鏈結合,達到整體製造業升級。   計劃具體目標如下:(1)以資通訊技術為基礎的解決方案導入製造業生產過程,增加產品獨特性、多樣化、可大規模生產,及保有高度靈活性,以迅速反應瞬息萬變的市場。(2)縮短進入市場的研發製程,提升產品質量,並透過數位化設計、成型、模擬實作及預測分析,提升工作效率。(3)改善整合生產環境的人為因素。(4)透過現代資通訊基礎的生產技術使得資源、材料、能源更有持續性。(5)促進並強化製造領域的共同平台及其生態系統。(6)從獨特的地理位置創建虛擬價值鏈,從而善用優秀人才的潛力。   我國為整合新創能量,以創造製造業下一波成長動能,今年亦陸續公布「智慧機械產業推動方案」與「數位國家‧創新經濟發展方案」,以具高效率、高品質、高彈性等特徵之智慧生產線,透過雲端及網路與消費者快速連結,打造下世代工廠與聯網製造服務體系。

TOP