標準必要專利與反托拉斯之成果運用法制-以高通案為例

刊登期別
第30卷,第8期,2018年8月
 
隸屬計畫成果
產業科技創新之法制建構計畫
 
摘要項目
  標準必要專利,為專利權人向標準必要專利組織,為公平、合理、無歧視的授權承諾(FRAND),以換取成為市場標準的獨占利益。一旦成為標準必要專利權人,市場力量將擴大,若同時搭配獨特商業模式的運作,恐引發違反反托拉斯規則之疑慮。然而,標準必要專利實係代表著智慧財產權的激勵與創新,與反托拉斯法促進自由競爭思想間呈現矛盾與合作的關聯,該如何維持兩者間的動態平衡,在不過度干預研發創新與成果運用產出下,仍保持市場競爭秩序,追求全體消費者的最大利益,是本文聚焦的重要議題。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 標準必要專利與反托拉斯之成果運用法制-以高通案為例, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8110&no=55&tp=1 (最後瀏覽日:2025/08/19)
引註此篇文章
你可能還會想看
美國政府呼籲立法遏止資料盜取並加強學生隱私保護

  美國歐巴馬總統在美國聯邦貿易委員會(Federal Trade Commission,FTC)2015年1月12日所舉辦的會議上,呼籲聯邦政府應制定「個人資料通知與保護法」(The Personal Data Notification and Protection Act),該法要求美國企業建立通報機制,其必須在資料遭盜取之日起三十天內通報客戶,以保護美國大眾之隱私。此一要求主要係因為發生多起網路駭客與資安事件,但目前聯邦政府卻欠缺相關法制,故聯邦政府嘗試藉此改善各州法律各行其事無法完善資安保護之問題,亦減輕跨州營運之美國企業適用各州法律之負擔,將有助於產業法制環境之改善。   同時,歐巴馬總統亦提出制定「學生數位隱私法」(The Student Digital Privacy Act)之呼籲,該法將禁止企業為獲取利益經由學校取得學生資料。此外,歐巴馬總統亦提及美國企業將需要簽署一自願性協議(Voluntary Code of Conduct for Smart Grid Customer Data Privacy,VCC),使消費者能夠查詢各企業之信用評分,帶動企業自主保護數位資料之安全,並以此作為身分盜取之預警,避免造成個資外洩後損失更多權益。而本次呼籲制定的法規尚針對先前由美國眾議院提出之「網路情報分享及保護法」(Cyber Intelligence Sharing and Protection Act,CISPA),特別強化其網路使用者保護之部份規定;其中包括加強公私部門合作以及深化網路防護安全,藉此妥善處理網路犯罪、保護國土安全等相關問題。是故,本次制定法規之目的將更著眼於擴大授權,使政府目的事業主管機關以及企業之間能夠共享相關資訊之權限,以預防更多潛在性的網路攻擊與資料盜取事件。

因應美國華盛頓州《我的健康我的資料法》施行,受監管對象隱私權政策應更新

美國華盛頓州《我的健康我的資料法》(My Health, My Data,以下簡稱該法)於2024年3月31日生效,該法係於2023年4月27日通過。目標在於保護華盛頓州消費者的健康資料,特別是生殖健康相關資料(data related to reproductive healthcare)。所拘束對象並不在HIPAA之監管範圍內,包括穿戴式裝置(wearables)、特定零售購物和非HIPAA 所規範之遠距醫療服務(telehealth services)所蒐集之資料。 該法最繁瑣合規要求之一為,受監管對象必須在其主頁上公佈消費者健康資料相關隱私權政策(下統稱隱私權政策)連結,連結必須為獨立、特定且不得包含該法所未要求之額外資訊。另針對小型企業,則設有三個月之緩衝時間,即應於 2024 年 6 月 30 日前遵循該要求。 隱私權政策必須清楚且醒目地揭露以下內容: 1. 所蒐集之健康資料類別和蒐集目的,包括將如何使用這些資料; 2. 所蒐集健康資料來源及類別; 3. 共享之健康資料類別; 4. 共享消費者健康資料的第三方或相關企業之類別;以及 5. 消費者如何行使該法所賦予之權利,包括撤銷同意和要求刪除之權利。 最重要的是,除特殊情形外(即1.已揭露其他特定目的2.取得消費者對其他特定目的所為蒐集、使用、揭露之明確同意),受監管對象不得基於隱私權政策中未明確揭露之任何其他目的,蒐集、使用或共享消費者健康資料。 若違反該法相關規定,即被視為違反《華盛頓州消費者保護法》(the Washington Consumer Protection Act),可由華盛頓州總檢察長提出強制執行。另該法為美國第一部保護大量健康資料之法律,顯現對消費者資料保護監管逐漸嚴格之趨勢。

日本訂定氫燃料基本戰略,推廣氫燃料使用並降低碳排放。

  日本於2017年12月26日「第2次再生能源及氫氣等閣員會議」中,作為跨省廳之國家戰略,訂定「氫燃料基本戰略」(下稱「本戰略」),2050年為展望,以活用及普及氫燃料為目標,訂定至2030年為止之政府及民間共同行動計畫。此係在2017年4月召開之「第2次再生能源及氫氣等閣員會議」中,安倍總理大臣提出為了實現世界先驅之「氫經濟」,政府應為一體化策略實施,指示於年度內訂定基本戰略。為此,經濟產業省(下稱「經產省」)邀集產官學專家,召開「氫氣及燃料電池戰略協議會」為討論審議,擬定本戰略。其提示出2050年之未來之願景,從氫氣的生產到利用之過程,跨各省廳之管制改革、技術開發關鍵基礎設施的整備等各種政策,在同一目標下為整合,擬定過程中有經產省、國土交通省、環境省、文部科學省及內閣府為共同決定。   氫燃料基本戰略之訂定,欲解決之兩大課題:   第一,能源供給途徑多樣化及自給率的提高:日本94%的能源需依靠從海外輸入化石燃料,自給率僅有6-7%,自動車98%的燃料為石油,其中87%需從中東輸入。火力發電場所消費的燃料中,液態天然氣(LNG)所佔比例也在上升中,而LNG也幾乎全靠輸入。   第二,CO2排出量的削減。日本政府2030年度之CO2排出量預定比2013年度削減25%為目標。但是,受到東日本大地震後福島第一核能發電廠事故的影響,日本國內之核能電廠幾乎都停止運轉,因此LNG火力發電廠的運轉率也提高。LNG比起煤炭或石油,其燃燒時產生CO2之量較為少,但是現在日本電力的大部分是倚賴LNG火力發電,CO2排出量仍是增加中。   因此本次決定之氫燃料基本戰略,係以確實建構日本能源安全供給體制,並同時刪減CO2排出量為目標,能源如過度倚賴化石燃料,則係違反此二大目標,因此活用不產生CO2的氫燃料。但是日本活用氫燃料之狀況,尚處於極小規模,或者是實驗階段。把氫燃料作為能源之燃料電池車(FCV),其流通數量也非常少,而氫燃料販賣價格也並非便宜。   氫燃料戰略之目標係以大幅提高氫燃料消費量,降低其價格為目的。現在日本氫燃料年間約200噸消費,預定2020年提高至4000噸,2030年提高至30萬噸,同時並整備相關商用流通網。為了提高氫燃料消費量,需實現低成本氫燃料利用,使氫燃料之價格如同汽油及LNG同一程度之成本。現在1Nm3約為100日圓,2030年降低至30日圓,最終以20日圓為目標,約為目前價格之5分之一為目標,在包含環境上價值考量,使其具備與既有能源有同等競爭力。   實現此一目標需具備:1.以便宜原料製造氫, 建立氫大量製造與大量輸送之供應鏈;2.燃料電池汽車(FCV)、發電、產業利用等大量氫燃料利用及技術之開發。 以便宜原料製造氫, 建立氫大量製造與大量輸送之供應鏈 透過活用海外未利用資源,以澳洲之「褐碳」以及汶萊之未利用瓦斯等得製造氫,目前正在大力推動國際氫燃料供應鏈之開發計畫。水分含量多之褐碳,價格低廉,製造氫氣過程中產生之CO2,利用目前正在研究進行中之CCS技術(「Carbon dioxide Capture and Storage,CO2回收及貯留技術),將可製造低廉氫氣。為了將此等海外製造之氫氣輸送至日本,使設備大規模化,並開發特殊船舶運輸等,建立國際氫燃料供應鏈。再生能源採用的擴大與活化地方:再生能源利用擴大化下,為了確保能源穩定供應,以及有必要為剩餘電力之貯藏,使用過度發電之再生能源製造氫燃料(power to gas技術)而為貯藏,為可選擇之方法,目前正在福島浪江町進行相關實證。 燃料電池汽車、發電、產業利用等大量氫燃料之利用   (1)電力領域的活用:前述氫氣國際供應鏈建立後,2030年商用化實現,以17日圓/kwh為目標,氫燃料年間供應量約30萬噸左右(發電容量約為1GW)。未來,包含其環境上價值,與既有LNG火力發電具備相等之成本競爭力為目標。其供應量。年間500萬噸~1000萬噸左右(發電容量16~30GW)。2018年1月開始在神戶市港灣人工島(Port Island),以氫作為能源,提供街區電力與熱能,為世界首先之實證進行。   (2)交通上之運用:FCV預計至2020年為止,4萬台左右之普及程度,2025年20萬台左右,2030年80萬台左右為目標。氫氣充填站,2020年為止160站、2025年320站,2020年代後半使氫氣站事業自立化。因此,管制改革、技術開發及官民(公私)一體為氫氣充填站之策略整備,三者共同推進。   燃料電池(FC)巴士2020年引進100台左右、2030年為止1200台左右。(FC)燃料電池堆高機2020年引進500台左右,2030年1萬台左右。其他如:燃料電池卡車、燃料電池小型船舶等。   (3)家庭利用:家庭用氫燃料電池(ENE FARM),係以液態瓦斯作為能源裝置,使用改質器取得氫,再與空氣中氧發生化學變化,產生電力與熱能,同時供應電力與熱水。發電過程不產生CO2,但是改質過程抽出氫時,會排出CO2。降低價格,使其普遍化為目標,固體高分子型燃料電池(PEFC)在2020年約為80萬日圓,固態酸化物燃料電池(SOFC)約為100萬日圓價格。在集合住宅及寒冷地區、歐洲等需求較大都市,開拓其市場。2030年以後,開發不產生CO2之氫燃料,擴大引進純氫燃料電池熱電聯產。   其他例如:   (4)擴大產業利用。   (5)革新技術開發。   (6)促進國民理解與地方合作。   (7)國際標準化作業等。   此一氫燃料戰略之推行下,本年3月5日為了擴大普及FCV,由氫氣充填營運業者、汽車製造業者、金融投資等11家公司,共同進行氫氣充填站整備事業,設立「日本氫氣充填站網路合作公司(英文名稱:Japan H2 Mobility,下稱「JHyM」)」,加速並具體化氫氣充填站之機制,今後以JHyM為中心,推動相關政策與事業經營。預定,本年春天再設立8個充氣站,完成開設100個氫氣充填站之目標。

日本對未來2020年至2030年間網路基礎設施之預測

  日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。   在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。   物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。   人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。   由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。

TOP